
Data Sharing with Generative Adversarial Networks:

From Theory to Practice

Submitted in partial fulfillment of the requirements for

the degree of

Doctor of Philosophy

in

Electrical and Computer Engineering

Zinan Lin

B.E., Electronic Engineering, Tsinghua University

Carnegie Mellon University

Pittsburgh, PA

October 2022

©Zinan Lin, 2022

All Rights Reserved

Acknowledgments

First of all, I would like to thank my co-advisors, Giulia Fanti and Vyas Sekar. Their

incredible support have created a fantastic environment for me to freely explore research

directions and ideas, and to fully enjoy the excitement of research. Their endless patience

and insightful guidance have helped me to grow significantly in all aspects of my research

skills. I have always found Giulia to be very approachable and enjoyable person to talk

with, both as an advisor and as a friend. Her high research standards, rigorous research

attitude, and caring personality have had a profound impact to me. Similarly, I have always

been impressed by Vyas’s sharp mind when it comes to making connections across different

topics and his brilliant vision for impactful research problems. While I have learned a lot

from Vyas’s writing, presentation, and communication skills, I still have a long way to

go to reach even a fraction of his abilities in these areas. In retrospect, I feel extremely

fortunate to have had Giulia and Vyas as my co-advisors during my research journey.

I would like to express my heartfelt gratitude to my dissertation committee members,

Sewoong Oh, Jun-Yan Zhu, and Steven Wu. Sewoong Oh introduced me to this fascinating

world of generative models, and provided invaluable guidance and mentorship as I embarked

on my earliest research projects in Ph.D. His brilliant ideas and mathematical insights have

shaped my research path to a great extent. I am also extremely grateful to have Jun-Yan

and Steven in my committee. I have long been a fan of their work, particularly Jun-Yan’s

pioneering work on generative adversarial networks and Steven’s seminal work on privacy,

which have inspired me greatly throughout my Ph.D. journey. Their insightful comments

and feedback have been invaluable to the writing of this dissertation.

I would also like to extend my thanks to all my wonderful collaborators, including

Alankar Jain, Ashish Khetan, Carolina Zarate, Charles Kamhoua, Chen Wang, Cho-Yu

Jason Chiang, Hao Liang, Jeremy Cohen, Kevin Chan, Kiran Thekumparampil, Minhao

Jin, Nandi Leslie, Ritika Mulagalapalli, Sekar Kulandaivel, Shuaiqi Wang, Soo-Jin Moon,

iii

Todd Huster, and Yucheng Yin. Without your help and contributions, this dissertation

would not have been possible. I would also like to thank my mentors and colleagues during

my research internships at Google and NVIDIA, including Yundi Qian, Xun Huang, Eugene

Brevdo, Mircea Trofin, Krzysztof Choromanski, David Li, and Ming-Yu Liu, who have

taught me so much beyond the scope of my research. In addition, I would also like to express

my appreciation to all of the professors, fellow students, researchers, classmates, friends,

and staff of ECE, CyLab, and CMU, who have made my last five years so memorable.

Your help, support, and friendship have meant a great deal to me.

Finally, I would like to express my deepest gratitude to my wife Wenyu Wang and my

parents Congren Lin and Ruiying Chen for their unconditional love and support throughout

my life. I would also like to thank my two lovely cats, Cookie and Doudou, for their “warm”

support and companion.

Funding sources. My Ph.D. has been supported by 2022 AAAI scholarship, 2020 CyLab

Presidential Fellowship, 2019 Siemens FutureMakers Fellowship, 2017 CMU Presidential

Fellowship, and 2017 Carnegie Institute of Technology Dean’s Fellow. The dissertation

is supported by NSF awards CNS-1527754, CCF-1553452, CCF-1705007, RI1815535, CA-

2040675, and RINGS award 2148359. The dissertation is supported in part by faculty

research awards from Google, JP Morgan Chase, Intel, and the Sloan Foundation, as well

as gift grants from Cisco and Siemens AG. This research was sponsored in part by the

U.S. Army Combat Capabilities Development Command Army Research Laboratory un-

der Cooperative Agreement Number W911NF-13-2-0045 (ARL Cyber Security CRA), the

U.S. Army Research Office and the U.S. Army Futures Command under Contract No.

W911NF20D0002, and the Air Force Office of Scientific Research under award number

FA9550-21-1-0090. The views and conclusions contained in this document are those of

the authors and should not be interpreted as representing the official policies, either ex-

pressed or implied, of the Combat Capabilities Development Command Army Research

Laboratory or the U.S. Government. The U.S. Government is authorized to reproduce and

iv

distribute reprints for Government purposes notwithstanding any copyright notation here

on. This dissertation used the Extreme Science and Engineering Discovery Environment

(XSEDE), which is supported by National Science Foundation grant number OCI-1053575

and ACI-1548562. Specifically, it used the Bridges system, which is supported by NSF

award number ACI-1445606, at the Pittsburgh Supercomputing Center (PSC). This dis-

sertation is partially supported by the generous research credits on AWS cloud computing

resources from Amazon.

Zinan Lin

v

Abstract

In today’s age of big data, data sharing among companies, customers, and researchers has

become a critical activity that drives advancements across industry and academia. In these

data sharing scenarios, stakeholders want the shared data to have high fidelity, meaning

that it accurately reflects the important properties of the original data for downstream

applications. At the same time, the shared data must be privacy-preserving, so that sen-

sitive business and personal information from the data holder is not disclosed during the

data sharing process. Unfortunately, achieving both of these goals simultaneously is chal-

lenging with existing data sharing techniques such as anonymization, simulation, or simple

generative models.

Recent advances in generative adversarial networks (GANs) offer a new opportunity

to tackle this long-standing challenge. Given a dataset of images, GANs can synthesize

new, random images that are from the same distribution as the original images. Their

impressive results in synthesizing photorealistic, high-resolution images suggest the poten-

tial of GANs as a building block for a data sharing tool. However, notable challenges

remain. On the fidelity front, GANs’ generated samples often lack diversity, and GANs are

notoriously unstable to train—small changes to hyper-parameters can lead to poor sample

fidelity. Moreover, real-world data required in data sharing applications (e.g., long and

multi-dimensional time series) has its own unique characteristics different from images,

which creates additional fidelity challenges. On the privacy front, the privacy properties

of GANs are not well understood, and making them privacy-preserving is still an open

question.

In this dissertation, we explore how to build a high-fidelity and privacy-preserving

data sharing tool with GANs. We tackle this question in a full-stack fashion, from studying

and improving the theoretical foundations of GANs to applying these insights in practical

data sharing applications. On the fidelity front, we propose theoretical frameworks for

vi

analyzing GAN’s sample diversity and training stability problems. Based on these insights,

we propose simple and effective fixes to boost GANs’ sample diversity and training stability,

resulting in better sample fidelity. On the privacy front, we analyze the fundamental privacy

properties of GANs, identify the privacy issues, and design new frameworks and approaches

to protect sensitive business and personal information in the original data. Finally, based

on these insights, we build a practical GAN-based data sharing tool for time series data and

demonstrate its fidelity across applications in systems and networking domains. We also

package the algorithmic contributions in this dissertation in a modular library for future

applications.

vii

Contents

Acknowledgments iii

Abstract vi

Contents viii

List of Figures xii

List of Tables xvii

List of Algorithms xviii

Chapter 1 Introduction 1

1.1 Motivation . 1

1.2 The Promise and Challenges of GANs . 3

1.3 Contributions . 4

1.4 Outline . 7

Chapter 2 Background 8

2.1 Motivating Scenarios . 8

2.2 Techniques for Sharing Data . 9

2.2.1 Prior Techniques . 10

2.2.2 Generative adversarial networks (GANs) 12

2.3 Open Questions . 14

Chapter 3 Fidelity Foundations 16

3.1 Overview of Fidelity Challenges . 16

3.2 Improving Sample Diversity . 17

3.2.1 Theoretical Framework for Analyzing Sample Diversity 18

3.2.2 PacGAN for Improving Sample Diversity 28

3.2.3 Experiments . 29

3.2.4 Discussions . 33

viii

3.3 Improving Training Stability . 34

3.3.1 Theoretical Analysis of Spectral Normalization 34

3.3.2 Bidirectional Spectral Normalization for Improving Sample Diversity 43

3.3.3 Experiments . 46

3.3.4 Discussions . 48

3.4 Chapter Summary . 49

Chapter 4 Privacy Foundations 50

4.1 Overview of the Privacy Challenges . 50

4.2 Protecting Sample-Level Privacy . 52

4.2.1 GANs’ Inherent Privacy Guarantees 53

4.2.2 Challenge: DG-SGD Gives Bad Fidelity-Privacy Tradeoff on GANs 60

4.2.3 Public Pretraining for Improving Fidelity-Privacy Tradeoff 61

4.2.4 Discussions . 62

4.3 Protecting Distributional Privacy . 63

4.3.1 Theoretical Framework for Distributional Privacy 63

4.3.2 Privacy-Distortion Tradeoffs . 67

4.3.3 Data Release Mechanism Design . 67

4.3.4 Case Studies . 68

4.3.5 Experiments . 73

4.3.6 Discussions . 77

4.4 Chapter Summary . 78

Chapter 5 Applications 79

5.1 Meta Architecture for Time Series Data . 79

5.1.1 Motivation . 79

5.1.2 Problem Formulation . 80

5.1.3 Challenges . 80

5.1.4 DoppelGANger (DG) Design . 81

5.2 Unified Library for Future Applications . 89

5.3 Case Studies . 90

5.3.1 Setup . 90

5.3.2 Results . 92

5.3.3 Other Case Studies . 99

ix

5.4 Chapter Summary . 100

Chapter 6 Conclusions and Future Works 102

6.1 Summary . 102

6.2 Future Work . 102

Appendix A Proofs from Chapter 3 104

A.1 Proofs from § 3.2 . 104

A.1.1 Additional Theoretical Analysis . 104

A.1.2 Proof of Theorem A.1.1.1 . 107

A.1.3 Proof of Theorem 3.2.1.1 . 110

A.1.4 Proof of Theorem 3.2.1.2 . 113

A.2 Proofs from § 3.3 . 116

A.2.1 Additional Theoretical Analysis . 116

A.2.2 Proof of Proposition 3.3.1.1 . 117

A.2.3 Proof of Proposition 3.3.1.2 . 118

A.2.4 Proof of Theorem 3.3.1.1 . 119

A.2.5 Proof of Theorem 3.3.1.2 . 119

A.2.6 Proof of Theorem 3.3.2.1 . 125

Appendix B Proofs from Chapter 4 127

B.1 Proofs from § 4.2 . 127

B.1.1 Proof of Theorem 4.2.1.1 . 127

B.1.2 Proof of Proposition 4.2.1.1 . 129

B.1.3 Proof of Proposition 4.2.1.2 . 130

B.1.4 Proof of Proposition 4.2.1.3 . 131

B.1.5 Proof of Theorem 4.2.1.2 . 132

B.1.6 Proof of Lemma B.1.1.2 . 133

B.1.7 Proof of Lemma B.1.1.3 . 133

B.1.8 Proof of Lemma B.1.1.5 . 134

B.1.9 Proof of Lemma B.1.2.1 . 135

B.1.10 Proof of Lemma B.1.2.2 . 135

B.2 Proofs from § 4.3 . 136

B.2.1 Proof of Theorem 4.3.2.1 . 136

B.2.2 Proof of Corollary 4.3.4.1 . 138

x

B.2.3 Proof of Proposition 4.3.4.1 . 138

B.2.4 Proof of Corollary 4.3.4.2 . 139

B.2.5 Proof of Proposition 4.3.4.2 . 139

B.2.6 Proof of Corollary 4.3.4.3 . 140

B.2.7 Proof of Proposition 4.3.4.3 . 140

Bibliography 142

xi

List of Figures

1.1 Data sharing is crucial in many fields and applications. This dissertation

presents fundamental and practical innovations in building a high-fidelity,

privacy-preserving data sharing tool with generative adversarial networks

(GANs) [1]. This tool allows data holders to share proprietary data without

compromising its sensitive information. 1

1.2 GANs [1] consist of two components: a generator, which maps a random

vector to a random sample, and a discriminator, which tries to distinguish

between real and generated data samples. The images are from CelebA

Dataset [2] for illustration purposes. 3

1.3 The contributions of this dissertation. 4

2.1 Taxonomy of data sharing techniques. Arrows point to subcategories of

the technique. Red boxes indicate the techniques that we focus on in this

dissertation. 9

3.1 Scatter plot of the 2D samples from the true distribution (left) of 2D Grid

Dataset and the learned generators using GAN (middle) and PacGAN2

(right). PacGAN2 captures all of the 25 modes. 17

3.2 True distribution (left), DCGAN generated samples (middle), and PacD-

CGAN2 generated samples (right) from the Stacked MNIST Dataset show

PacDCGAN2 captures more diversity while producing sharper images. . . . 18

3.3 A formal definition of (ε, δ)-mode collapse and its accompanying region rep-

resentation captures the intensity of mode collapse for generators Q1 with

mode collapse and Q2 which does not have mode collapse, for a toy example

distributions P , Q1, and Q2 shown on the left. The region of (ε, δ)-mode

collapse that is achievable is shown in grey. 20

3.4 The hypothesis testing region of (P,Q) (bottom row) is the same as the

mode collapse region (top row). We omit the region above y = x axis in the

hypothesis testing region as it is symmetric. The regions for mode collapsing

toy example in Fig. 3.3 (P,Q1) are shown on the left and the regions for the

non mode collapsing example (P,Q2) are shown on the right. 21

xii

3.5 Total variation distance is one among many properties of (P,Q2) that can

be directly read off of the region R(P,Q). 23

3.6 The range of dTV(Pm, Qm) achievable by pairs with dTV(P,Q) = τ , for a

choice of τ = 0.11, defined by the solutions of the optimization Eq. (A.1)

provided in Theorem A.1.1.1 in the Appendix (left panel). The range of

dTV(Pm, Qm) achievable by those pairs that also have (ε = 0.00, δ = 0.1)-

mode collapse (middle panel). A similar range achievable by pairs of distri-

butions that do not have (ε = 0.07, δ = 0.1)-mode collapse or (ε = 0.07, δ =

0.1)-mode augmentation (right panel). Pairs (P,Q) with strong mode col-

lapse occupy the top region (near the upper bound) and the pairs with weak

mode collapse occupy the bottom region (near the lower bound). 25

3.7 PacGAN(m) augments the input layer by a factor of m. The number of

weights between the first two layers are increased to preserve the mother

architecture’s connectivity. Packed samples are concatenated and fed to the

input layer; grid-patterned nodes are input nodes for the second sample. . . 28

3.8 Effect of number of parameters on evaluation metrics. 31

3.9 CelebA samples generated from DCGAN (left) and PacDCGAN2 (right)

show PacDCGAN2 generates more diverse and sharper images. 33

3.10 Inception score over the course of training. The “gradient vanishing” incep-

tion score plateaus as training is stalled. 37

3.11 Norm of gradient with respect to parameters during training. The vanishing

gradient collapses after 200k iterations. 37

3.12 Gradient norms of each discriminator layer in MNIST Dataset. 38

3.13 Ratio of gradient norm v.s. inverse ratio of spectral norm in MNIST Dataset. 39

3.14 Inception score of different SN variants in CIFAR10 Dataset. 42

3.15 Gradient norms of different SN variants in CIFAR10 Dataset. 42

3.16 Inception score of scaled SN in CIFAR10 Dataset. 42

3.17 The parameter variance of scaled SN in CIFAR10 Dataset. 42

3.18 Parameter variances throughout training in CIFAR10 Dataset. The blue

lines show the parameter variances of different layers when SN is applied,

and the original line shows our theoretical upper bound given in Eq. (3.9). . 43

3.19 Inception score of SSN and scaled LeCun initialization in CIFAR10, with

mean and standard error of the best score during training across multiple

runs. 45

xiii

3.20 Inception score in CIFAR10 Dataset. The results are averaged over 5 random

seeds, with αg = 0.0001, αd = 0.0001, ndis = 1. 47

4.1 Autocorrelation for real, ϵ = + inf, and DP-GANs with different values of ϵ). 60

4.2 Privacy-fidelity tradeoffs: Privacy is measured with (ϵ, δ) in DP (↓) and

fidelity is measured as average JSD across metrics (↓). 62

4.3 Problem overview. The data holder produces released data and wants to

hide distributional secrets of the original data. The data user requires that

the utility of the released data be good. The attacker, who could be the data

user, also observes the released data, and wants to guess the secrets of the

original data. Note that we focus on secrets about the underlying distribution

(e.g., mean, quantile, standard deviation, of a specific data column), whereas

many existing frameworks (e.g., differential privacy [3], anonymization [4],

sub-sampling [4]) protect information from individual samples (rows). Our

goal is to provide a distributional privacy toolbox for data holders to use. The

toolbox contains data release mechanisms for a set of pre-defined secrets and

data distributions. Data holders can choose the mechanism according to the

secret they want to hide and the closest data distributions. 64

4.4 Illustration of the data release mechanism for continuous distributions when

secret=mean. 70

4.5 Privacy (lower is better) and distortion (lower is better) of AP, DP and our

data release mechanisms. Each point represents one instance of the data

release mechanism with one hyper-parameter. “Lower bound” is the theo-

retical lower bound of the achievable region. Our data release mechanisms

achieve a better privacy-distortion tradeoff than AP and DP. 75

5.1 Autocorrelation of daily page views for Wikipedia Web Traffic Dataset. . . 81

5.2 (a) The usual way of generating time series. (b) Batch generation with

S = 3. The RNN is a single neural network, even though many units are

illustrated. This unrolled representation conveys that the RNN is being used

many times to generate samples. 82

5.3 Error vs. batch parameter. 83

5.4 Without auto-normalization, generated samples show telltale signs of mode

collapse as they have similar shapes and amplitudes. 84

xiv

5.5 Distribution of (max+min)/2 of (a) DG without and (b) DG with the aux-

iliary discriminator, (c) TimeGAN, and (d) RCGAN (WWT data). 88

5.6 Architecture of distributional privacy highlighting key ideas and extensions

to canonical GAN approaches. 89

5.7 CDF of Pearson correlation between CPU rate and assigned memory usage

from GCT. 93

5.8 Histogram of task duration for the Google Cluster Trace Dataset. RNN-

generated data misses the second mode, but DoppelGANger captures it. . . 94

5.9 Histograms of end event types from GCT. 95

5.10 Mean square error of autocorrelation of the daily page views v.s. number of

training samples for WWT dataset. For each training set size, 5 independent

runs are executed and their MSE are plotted in the figure. The line connects

the median MSE of the 5 independent runs. 97

5.11 Predictive modeling setup: Using training data A, we generate samples

B ∪ B′. Subsequent experiments train downstream tasks on A or B, our

training sets, and then test on A′ or B′. 97

5.12 Event-type prediction accuracy on GCT. 98

5.13 Maximum CPU usage. 100

A.1 The evolution of total variation distance over the packing degree m for

pairs with no mode collapse/augmentation is shown as a blue band, as de-

fined by the optimization Eq. (3.6) and computed using Theorem 3.2.1.2.

For a fixed dTV(P,Q) = τ = 0.11 and the lack of (ε, δ = 0.1)-mode col-

lapse/augmentation constraints, we show the evolution with different choices

of ε ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08}. The black solid lines show the max-

imum/minimum total variation in the optimization Eq. (A.1) as a reference.

The family of pairs (P,Q) with weaker mode collapse (i.e. larger ε in the

constraint), occupies a smaller region at the bottom with smaller total varia-

tion under packing, and hence is less penalized when training the generator.

. 108

A.2 For any pair (P,Q) with total variation distance τ , there exists an α such

that the corresponding region R(P,Q) is sandwiched between Rinner(α, τ)

and Router(τ). 109

A.3 Canonical pairs of distributions corresponding to Rinner(α, τ) and Router(τ). 110

xv

A.4 For any pair (P,Q) with (ε, δ)-mode collapse, the corresponding region

R(P,Q) is sandwiched between Rinner1(ε, δ, α, τ) and Router(τ). 111

A.5 Canonical pairs of distributions corresponding toRinner(ε, δ, τ, α) andRouter(τ).

. 111

A.6 When α > 1− (τδ/(δ− ε)), this shows a canonical pair of distributions cor-

responding to Rinner(ε, δ, τ, α) for the mode-collapsing scenario H1(ε, δ, τ).

. 112

A.7 When δ + ε ≤ 1 and τ = (δ− ε)/(δ + ε) (i.e. (1− τ)/2 : (1 + τ)/2 = ε : δ), a

triangle mode collapse region that touches both points (ε, δ) and (1−δ, 1−ε)
at two of its edges also touches the 45-degree line with a τ shift at a vertex

(left). When δ + ε > 1, the same happens when τ = (δ − ε)/(2 − δ − ε)

(i.e. (1− τ)/2 : (1 + τ)/2 = (1− δ) : (1− ε)). Hence, if τ > max{(δ− ε)/(δ+

ε), (δ − ε)/(2− δ − ε)}, then the triangle region that does not include both

orange points cannot touch the blue 45-degree line. 113

A.8 For any pair (P,Q) with no (ε, δ)-mode collapse or no (ε, δ)-mode augmenta-

tion, the corresponding region R(P,Q) is sandwiched between Rinner(α
′, τ)

and Router1(ε, δ, α, β, τ) (left). A canonical pair of distributions correspond-

ing to Router1(ε, δ, α, β, τ) (middle and right). 114

A.9 A canonical pair of distributions corresponding to Router2(ε, δ, α, β, τ). . . 116

B.1 The upper bound of ROC curves. 131

B.2 The pair of distributions that achieve the ROC upper bound. 132

B.3 The construction of attackers for proof of Theorem 4.3.2.1. The 2ϵ ranges

of ĝ0, ..., ĝN−1 jointly cover the entire range of possible secret [Lθ′ , Rθ′]. The

probability of guessing the secret correclty for any attacker is ≤ T . There-

fore, Rθ′ − Lθ′ >
(
⌈ 1T ⌉ − 1

)
· 2ϵ (Eq. (B.4)). 137

xvi

List of Tables

3.1 Two measures of mode collapse proposed in [5] for the stacked MNIST

dataset: number of modes captured by the generator and reverse KL di-

vergence over the generated mode distribution. The DCGAN, PacDCGAN,

and MD results are averaged over 10 trials, with standard error reported. . 32

3.2 Probability of at least one pair of near-duplicate images being present in a

batch of 1024 images generated from DCGAN and PacDCGAN2 on celebA

dataset show that PacDCGAN2 generates more diverse images. 33

3.3 Inception score (IS) and FID on CIFAR10 Dataset, STL10 Dataset, CelebA

Dataset, and ILSVRC2012 Dataset. The last three rows are proposed in this

work, with BSSN representing our final proposal—a combination of BSN and

SSN. Each experiment is conducted with 5 random seeds except that the last

three rows on ILSVRC2012 Dataset is conducted with 3 random seeds. Mean

and standard error across these random seeds are reported. We follow the

common practice of excluding IS in CelebA Dataset as the inception network

is pretrained on ImageNet, which is different from CelebA. Bold font marks

best numbers in a column. 46

5.1 Challenging properties of studied datasets. 90

5.2 Wasserstein-1 distance of total bandwidth distribution of DSL and cable

users. Lower is better. 96

5.3 Mean square error (MSE) of autocorrelation of the daily page views for

WWT dataset (i.e. quantitative presentation of Fig. 5.1). Each model is

trained with multiple independent runs, and the median MSE among the

runs is presented. Except the last row, all models are trained with 50000

training samples. 98

5.4 Average training time (hours) of synthetic data models on the WWT dataset.

All models are trained with 50000 training samples. 99

5.5 Rank correlation of predication algorithms on GCT and WWT dataset.

Higher is better. 100

xvii

List of Algorithms

4.2.1 Differentially-private GAN mechanism. 55

xviii

Chapter 1

Introduction

1.1 Motivation

We live in a data-driven world. Data sharing between different parties has become increas-

ingly common in many aspects of industry and academia (Fig. 1.1). For example, network

traces are shared from customers to networking vendors, which enables vendors to debug

and improve their products [6, 7]. Medical data is shared between hospitals [8, 9], which

enables them to collaboratively develop new machine-learning-based diagnosis algorithms

[10]. Data shared by researchers allow their research to be reproducible by others [11, 12].

In fact, data sharing has even become a new business in itself, with the emergence of data

marketplaces such as Databricks and Snowflake.

GANs

Original data

High-fidelity,
privacy-preserving
synthetic data

Data holder Data recipient

Product development
Product troubleshooting
Reproducing results
Open research
Vendor collaboration
…

Figure 1.1: Data sharing is crucial in many fields and applications. This disserta-
tion presents fundamental and practical innovations in building a high-fidelity, privacy-
preserving data sharing tool with generative adversarial networks (GANs) [1]. This tool
allows data holders to share proprietary data without compromising its sensitive informa-
tion.

In these data sharing scenarios, stakeholders want the shared data to be both high-

fidelity and privacy-preserving. Although its precise definition depends on the application,

fidelity means how much a piece of shared data preserves the characteristics of the original

data. For example, network vendors want the network traces shared from customers to be

representative of the true diversity in the original data (in terms of time-space, network

protocols, etc.), so that they can use them to debug and improve their products realistically.

1

Hospitals, on the other hand, want the shared data to be good enough so that diagnostic

algorithms trained on it will have high accuracy. Privacy refers to the ability of the shared

data to hide the information that data owners do not want to be revealed. In practice,

data owners have many privacy concerns. For example, when customers share their network

traces with the vendors, they may worry that the vendor can infer their business scales

from the total amount of traffic in the shared network traces. While there is a good

motivation for hospitals to share medical data, they do not want data recipients to be able

to reconstruct or infer information about a specific patient (e.g., name, address, disease).

Indeed, data protection regulations such as GDPR [13] and HIPAA [14] impose strict rules

on how data should be handled and shared to protect privacy.

Unfortunately, high-fidelity and privacy-preserving data sharing has been a challenge

for decades. One extreme solution is to share raw data, which has the highest fidelity but

provides no privacy. Instead of sharing raw data, many approaches have been proposed that

generate a different copy of data to share. Anonymization [15] is one common approach,

which involves removing or replacing personal identifiable information such as names and

zip codes. However, this approach can hurt fidelity by making it impossible to make any

inferences related to the removed attributes (e.g., the prevalence of a medical condition

within a specific zip code). Additionally, anonymization can still have severe privacy issues,

as the removed attributes can sometimes be recovered from other attributes, as seen in the

Netflix data breaches [16]. Another approach that is gaining popularity is called synthetic

data, which involves generating a new copy of data to share instead of directly modifying the

original data. One method for generating synthetic data is to use simulators to simulate

the process of generating ground-truth data and collect such data from the simulation

[17, 18, 19, 20, 21, 22, 23]. For example, a network simulator could be used to collect

network packets by simulating real servers talking to each other [19]. However, it can

be difficult to configure the parameters of the simulation (e.g., network link, queue size)

realistically, which can result in bad fidelity. Another approach is to use machine learning

models whose parameters are learned from data [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35,

36, 18, 37, 38, 39, 40]. For example, we could compute the mean and standard deviation of

the ages of a group of people and release data sampled from a Gaussian distribution with

those parameters. Of course, a Gaussian distribution may not be a good representation

of the original data. Indeed, this is a common problem with many machine learning

models: their representation capabilities may not be sufficient to accurately describe the

complicated real-world data, resulting in bad fidelity.

2

1.2 The Promise and Challenges of GANs

Random vector Generator

Generated samples

Discriminator

Real samples

Real?
Generated?

Figure 1.2: GANs [1] consist of two components: a generator, which maps a random vector
to a random sample, and a discriminator, which tries to distinguish between real and
generated data samples. The images are from CelebA Dataset [2] for illustration purposes.

In 2014, a new machine learning model called Generative Adversarial Networks

(GANs) [1] was invented, which offers a new opportunity to tackle the long-standing chal-

lenge of generating high-fidelity and privacy-preserving synthetic data. GANs are able to

use samples to learn the underlying distribution of a dataset and then generate new samples

that follow that distribution. Data holders can then release the generated samples to other

parties. GANs consist of two neural networks: a generator and a discriminator (Fig. 1.2).

The generator tries to generate samples that the discriminator will classify as being from

the real dataset. The discriminator, on the other hand, tries to accurately classify whether

the input sample is from the real dataset or from the generator. The two networks are

trained alternatively, and it has been shown that given enough data, network capacity,

and training time, the generator can learn the real distribution and generate samples that

mimic the properties of real data [1]. GANs have generated a lot of excitement in the ma-

chine learning community due to their ability to generate high-quality and high-resolution

images [41, 42], which was a very challenging task for prior machine learning models. This

suggests that GANs have the potential to overcome the long-standing fidelity problems

of prior data sharing tools. Motivated by this, the overarching questions we ask in this

dissertation is (Fig. 1.1):

Can we build a high-fidelity and privacy-preserving data sharing tool with GANs?

Despite the promise, some challenges remain. (1) Fidelity. Although GANs already

outperform prior models on fidelity by a great extent, they still have fidelity problems.

Indeed, GANs may not always produce samples with good fidelity—slight changes in the

3

hyper-parameters of the model can lead to poor generated samples [43, 44]. In addition,

the diversity of generated samples may be worse than that of the real data [44, 45]. (2)

Privacy. As GANs are a new model, their privacy properties remain unclear. Understand-

ing the privacy properties of GANs and making GANs more privacy-preserving regarding

the properties that data holders care about are important tasks. (3) Application. GANs

are initially successful in images, but real-world data comes in many other forms. It is an

open question how to adapt GANs to work with these more complicated forms of data.

1.3 Contributions

Privacy foundations (§4)

•Protecting sample-level privacy
•Protecting distributional privacy

Fidelity foundations (§3)

•Improving sample diversity
•Improving training stability

Applications (§5)

•Sharing real-world time series data
•Unified library for future applications

Support

Figure 1.3: The contributions of this dissertation.

In this dissertation, we tackle these questions in a full-stack fashion: ranging from

studying the theoretical foundations of GANs’ fidelity and privacy properties, to designing

general algorithms for improving GANs’ fidelity and privacy, as well as applying these

insights in real-world data sharing applications. Our specific contributions are as follows

(Fig. 1.3).

Contribution 1: Fidelity foundations. We conduct theoretical analysis on the cause

of the fidelity issues in GANs, and we propose principled and practical solutions to mitigate

these issues. More specifically, we study mode collapse and training instability, the two

biggest fidelity issues in GANs [44].

Mode collapse refers to the phenomenon where generated samples only capture a part

of the modes in data [44]. For example, when training a GAN on images of handwritten

digits 0 to 9, the GAN may only be able to generate some of the digits [46, 44]. We propose

the first analytical definition of mode collapse and theoretical analysis of the problem, using

4

tools from binary hypothesis testing and the seminal results of Blackwell [47]. This provides

an important theoretical foundation for understanding and analyzing mode collapse. Based

on this analysis, we propose PacGAN, a principled approach for handling mode collapse.

Instead of taking either one real sample or one generator sample at a time, PacGAN’s

discriminator takes a group of m samples, jointly coming from either real data or the

generator. We prove why this simple change could mitigate mode collapse—the intuition

is that multiple samples make it easier for the discriminator to detect mode collapse and

penalize the generator for it. PacGAN is easier to implement than previous approaches and

has significant improvements over vanilla GANs in practice. For the first time, PacGAN

achieves a full score on Stacked MNIST Dataset [45], a benchmark for mode collapse.

Training stability refers to the phenomenon where the sample fidelity of GANs often

fluctuates a lot during training and has large variance across different hyper-parameters

[43, 44]. This makes it difficult to get the best fidelity from GANs. A widely used heuristic

for stabilizing GAN training is spectral normalization (SN) [43], but little is understood

about why it works, so there is little analytical basis for using it or improving it. In this

dissertation, we prove that spectral normalization is able to ensure that the gradients of

GANs are always in a suitable range that prevents training instability. Our theory also

explains why an “incorrect” implementation of SN [43] can result in much better training

stability than an correct implementation [48]: the “incorrect” implementation happens to

control the gradient scales in the right range, while the correct implementation does not.

Based on these theoretical insights, we propose Bidirectional Scaled Spectral Normalization

(BSSN), an improved version of SN that better conditions the gradients and therefore

better stabilizes the training. By simply replacing SN with BSSN, we see better training

stability and better sample fidelity across a wide range of datasets.

Contribution 2: Privacy foundations. We conduct theoretical analysis of the privacy

properties of GANs, and propose algorithms to make them more privacy-preserving. More

specifically, we study two primary privacy concerns that data holders have: leakage of

information about individual samples and about the underlying distribution.

Information about individual samples (e.g., the name and address of a patient, the

IP address of a client) is highly sensitive. The de facto privacy framework for this privacy

concern is differential privacy (DP) [3]. DP uses a pair of numbers (ϵ, δ) to describe a

theoretical upper bound on the leakage of individual information. We study the inherent

DP properties of GANs and show that vanilla GANs do have a DP guarantee, but the

guarantee is too weak to provide meaningful practical protection. This means that we

5

need to modify GANs to make them differentially private. One natural approach is to

apply DP-SGD [49], a standard method for making neural networks differentially private.

But we empirically show that this approach hurts data fidelity too much. To address this,

we propose pretraining GANs on a public dataset and fine-tuning them on the sensitive,

private dataset with DP-SGD. This approach improves the privacy-fidelity tradeoff.

The other concern is about the underlying distribution of data. For example, the

mean traffic volume of data from a networking company can reveal the scale of its busi-

ness, which may be considered a trade secret. Unlike individual privacy concerns, these

distributional privacy concerns have been less studied in the community. To address this,

we propose distributional privacy, a principled framework for analyzing and protecting

these distributional privacy concerns in data sharing scenarios. We conduct theoretical

analysis of the privacy-fidelity tradeoff under distributional privacy, and propose data re-

lease mechanisms for protecting distributional privacy concerns such as mean, quantile,

and standard deviation. These data release mechanisms can be applied as a pre-processing

or post-processing step in our GAN-based data sharing framework.

Contribution 3: Applications. We want to apply our insights on concrete data shar-

ing applications to make real-world impacts. We focus on time series data, a common

type of data in many domains including system usage logs in cloud clusters, packets in

computer networks, bank transactions, and health records. Time series data has unique

characteristics different to images, such as complicated temporal patterns and complicated

correlations between different dimensions. We design new GAN architectures and data

normalization techniques tailored to time series data and we show that our synthetic data

maintains better fidelity than prior data sharing techniques in real-world applications.

We also package all of our fundamental fidelity and privacy advances, as well as our

time series data algorithm, in a Python package [6]. The package is modular and designed

to be extensible for supporting future data sharing techniques and applications.

Broader impacts. Our work has already been adopted by several companies in their

data sharing products and applications (see their blogs [50, 51, 52]). We hope that our

work can help unleash the potential of data through our high-fidelity, privacy-preserving

data sharing tools.

Our work could be useful even beyond data sharing. Note that GANs have been

widely used in other applications, such as image editing [53], virtual reality [54], content

creation [55]. All of these applications are impacted by the fundamental fidelity and pri-

vacy challenges in GANs. Our fidelity and privacy techniques can be generally useful for

6

mitigating these challenges regardless of the application.

1.4 Outline

The reset of the dissertation is structured as follows. Chapter 2 discusses the background

and preliminaries. Chapter 3 covers our work on understanding and improving the fidelity

foundations of GANs. Chapter 4 focuses on our work on understanding and improving the

privacy foundations of GANs. Chapter 5 presents how we apply our insights in real-world

data sharing applications. Chapter 6 provides the conclusion, summarizes other work not

included in the dissertation, and discusses future work.

7

Chapter 2

Background

2.1 Motivating Scenarios

In today’s era of big data, data sharing between different parties is increasingly important

across many aspects of industry and academia (Fig. 1.1). For example, data sharing is

crucial for:

• Collaboration across stakeholders in industry. Data sharing between differ-

ent organizations is an important part of the product development process. For

instance, video session data shared between video websites and video analytics ven-

dors enables both to collaboratively improve the video viewing experience for end

users [56, 57]. High fidelity data is essential to ensure the accuracy of the analytics

results. However, sensitive user information may be recovered from video viewing

data [16]. In another example, medical data shared between hospitals and healthcare

service providers (e.g., Nuance [58]) can enable the development of new ML-based

solutions that improve the efficiency of doctors and the experience of patients. In

this scenario, the healthcare service provider needs high fidelity medical data to train

better ML models, but hospitals may be concerned about the potential leakage of

patient information.

• Reproducible, open research. Many research proposals rely on datasets to test

and develop ideas, and larger datasets often result in breakthroughs in technology.

For example, in the fields of computer vision and machine learning, ImageNet [11], a

large scale real-world image database, has facilitated the evolution of deep learning

algorithms (e.g., [59, 60]). In networking and systems, large-scale datasets like the

cloud cluster traces datasets released by Google [15], Microsoft [61], and Alibaba

[62]) have also enabled researchers to study job scheduling algorithms, cloud simu-

lators, and data center systems [63] that would otherwise be difficult to study. In

these scenarios, researchers need high fidelity data to ensure that the research results

8

are realistic. However, releasing these datasets can also inadvertently leak sensitive

information. For example, cloud cluster trace datasets can reveal strategic enterprise

choices, such as the fraction of server types in use [12]. Such information reflects

the company’s business strategy and should be kept secret from competitors and

vendors. Simply removing the server type from the dataset is not a good option, as

this information is important for the downstream applications of the dataset, such

as predicting future CPU and memory usage.

Therefore, having a data sharing technique that can share high-fidelity and privacy-

preserving data is essential for fully harnessing the power of data. In the next section, we

will review existing techniques on data sharing.

2.2 Techniques for Sharing Data

To address the privacy concerns, a common approach is to generate a different copy of

data to share. Specifically, given a set of N samples X = {x1, . . . , xN}, the goal is to

generate a new set of samples Y = {y1, . . . , yM} that preserve the key characteristics of the

original data that data users care about (i.e. maintaining good fidelity), while hiding the

sensitive information that data owners do not want to leak (i.e., ensuring good privacy).

The taxonomy of the techniques for generating such data is visualized in Fig. 2.1.

Techniques for sharing data

Anonymized dataSynthetic data

Simulation models

Simple distributions

Machine learning models

Deep generative models Markov models

Variational autoencoder Generative adversarial networks Diffusion models

…

…

…

…Raw data

Figure 2.1: Taxonomy of data sharing techniques. Arrows point to subcategories of the
technique. Red boxes indicate the techniques that we focus on in this dissertation.

In this section, we discuss related techniques, as well as generative adversarial net-

works, the focus of this dissertation. These discussions are not intended to be a compre-

9

hensive review of all these techniques, but rather to help readers understand the position

of the dissertation within the broader field.

2.2.1 Prior Techniques

Instead of sharing raw data, there are two main alternatives used in practice. One is

sharing anonymized data [4]. In this approach, there is one-one mapping between the

generated sample and raw sample (thus we have M = N). Each anonymized sample yi is

created from the raw sample xi by removing personal identifiable information (e.g., name

and address in medical data, IP address in network traces) or replacing it with random

strings. This approach is widely used in the release process of public datasets (e.g., [15])

but has drawbacks in terms of both fidelity and privacy. This approach could greatly hurt

the resulting data fidelity due to the anonymization process [64]. At the same time, it does

not guarantee the privacy of data. Famous examples of this include Netflix data breaches

[16], where attackers were able to recover the identities of individuals in the anonymized

movie rating database released by Netflix [16]. The key insight is that the identity of the

users in the data can still be inferred from other seemingly non-sensitive attributes like

movie ratings when the attackers have side information. The other approach is synthetic

data, which we will discuss next.

Synthetic data is a different set of samples that mimic properties of the raw data.

The number of generated samples M is not necessarily equal to the number of original

samples N . There are two main models for creating synthetic data. Simulation models

generate data by building a simulator that mimics a real system that generates the raw data

[17, 18, 19, 20, 21, 22, 23]. For example, ns-2 [19] is a widely used simulator for computer

networks. Data holders can configure ns-2 according to the data and network, and run the

simulators to collect data (i.e., network packets) for sharing. In terms of fidelity, simulation

models are good if the simulator is very close to real systems. However, in practice, it is

often difficult to configure the parameters to simulate a given target dataset. For example,

given a dataset of packet traces, it is difficult to infer the speed of a specific network link,

considering the complex behaviors from the application layers all the way down to the

physical layers. As a result, these models could have poor fidelity in practice. The other

class of model used to generate synthetic data is machine learning models, which we discuss

next.

Machine learning models are parametric models where the parameters can be learned

10

(trained) from data. Specifically, suppose that the original data samples x1, . . . , xN ∈
Rd are from an unknown probability distribution pX over Rd. These models specify a

parametric distribution qθ to approximate pX , and use the data samples to compute the

optimal parameters (e.g., by maximizing the data likelihood [65]: maxθ
∑N

i=1 log qθ (xi)).

Then, new samples can be drawn from this learned model and released to other parties.

These models can be roughly categorized by the amount of domain expertise required

in the design phase. Some models in this class require a significant amount of human ex-

pertise: domain experts manually examine the data to determine which parameters are

important and which parametric model to use [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34,

35, 36, 18, 37, 38, 39, 40]. Let’s take the networking domain as an example again for

comparison to anonymization. Swing [36] extracts statistics of user, application, flow, and

link (e.g., packet loss rate, inter-session times) from raw network traffic data, and then

generates traffic by sampling from the extracted distributions. The fidelity of these models

depends on how well the model describes the data. In practice, it can be challenging to

come up with a complete list of characteristics that accurately describe the real-world. For

instance, BURSE [29] explicitly models the burstiness and self-similarity in cloud com-

puting workloads, but does not consider e.g. nonstationary and long-term correlations

[66].

Other more general parametric models require less human expertise to configure. Ex-

amples include Markov models for time series data [67] and restricted Boltzmann machine

for images [68]. These models have fewer hyper-parameters that users need to configure

and are able to generalize across more diverse datasets, thus requiring less human expertise

to use. However, due to their limited modeling capability, they usually have poor fidelity

on complicated real world datasets.

In the 2010s, during other such breakthroughs in deep learning, a new class of machine

learning models called deep generative models emerged as a promising approach, which

requires even less human expertise and has high fidelity for complex data. We discuss it in

the next paragraph.

Deep generative models are based on deep neural networks. The key component of

many deep generative models is a neural-network generator Gθ : Rl → Rd that maps a

lower-dimensional random noise z ∈ Rl from a standard distribution pZ (e.g., spherical

Gaussian) to the data domain Rd. In other words, the parametric distribution qθ used to

approximate the data distribution pX is induced by Gθ (z) where z ∼ pZ .

With the representation power of deep neural networks, this class model can better

11

represent completed data than the other models discussed previously. However, the fact

that it is less constrained also makes it harder to train. For example, unlike Markov models

where qθ is analytically tractable, there is no closed form solution for qθ in deep generative

models if Gθ is an arbitrary neural network. As a result, we cannot train it directly

with the objectives that work for other models, such as the maximum data likelihood loss

maxθ
∑N

i=1 log qθ (xi) that we discussed earlier.

Starting in the 2010s, many innovative approaches were proposed for training deep

generative models effectively. These approaches can be roughly divided into three cate-

gories: (1) adding constraints to make qθ tractable [69, 70], (2) using approximations of the

data likelihood [71], or (3) using a completely different loss [1]. As an example of the first

category, flow models [69, 70] constraint Gθ to be invertible so that qθ (x) can be computed

efficiently from θ and x. As an example of the second category, variational autoencoder

(VAE) [71] optimizes a lower bound of data likelihood instead of optimizing the intractable

data likelihood directly. The lower bound is derived using variational methods (see [71] for

details). Diffusion models [72, 73, 74] are a combination of the first two categories. Like

VAE, they also optimize a lower bound of data likelihood, but through a different method:

instead of directly generating the samples though a single neural network pass of Gθ, dif-

fusion models progressively transform Gaussian noise to the real distribution through a

sequence of denoising steps. Each denoising step is constrained to be a Gaussian distri-

bution (whose parameters are predicted by the neural network) so that the lower bound

is tractable. Generative adversarial networks (GANs) [1] belong to the third category: it

utilizes completely different training losses and paradigms.

Among all these models, GANs were the first one to be able to synthesize high-

quality, high-resolution images with dimensions as large as 1024×1024 pixels [41]. As a

result, GANs have attracted significant attention in the machine learning and computer

vision communities in recent years as a mainstream technique for data synthesis. We

discuss its technical details next.

2.2.2 Generative adversarial networks (GANs)

GANs are an innovative idea of training deep generative models. Besides the generator

Gθ, GANs have another component called discriminator Dη (Fig. 1.2). These two neural

networks play a dynamic minimax game against each other. An analogy provides the

intuition behind this idea. The generator is acting as a forger trying to make fake coins

12

(i.e., samples), and the discriminator is trying to detect which coins are fake and which

are real. If these two parties are allowed to play against each other long enough, both will

become good at their tasks. In particular, the generator will learn to produce coins that

are indistinguishable from real coins (but preferably different from the training coins he

was given).

Concretely, we search for the parameters of Gθ and Dη (i.e., θ, η) that optimize the

following type of minimax objective:

θ∗ ∈ arg min
θ

max
η

Ex∼pX [log (Dη (x))] + Ez∼pZ [log (1−Dη (Gθ (z)))]︸ ︷︷ ︸
2·dJS(pX∥qθ)−log(4)

. (2.1)

where pX is the distribution of the real data, and pZ is the distribution of the input code

vector z. Critically, [75] shows that the global optimum of Eq. (2.1) is achieved if and only

if pX = qθ, where qθ is the generated distribution of Gθ (z). The reason is that the optimal

value of the inner maximization problem turns out to be the Jensen-Shannon divergence

(denoted by dJS (·∥·)) between the data distribution pX and the generated distribution qθ

(up to a scaling and shift), when the discriminator Dη is trained to the optimum over the

space of all functions. In practice, we search over some parametric family of discriminators,

and we can only compute sample average of the losses. This provides an approximation

of the Jensen-Shannon divergence between pX and qθ. The outer minimization over the

generator tries to generate samples such that they are close to the real data in this (approx-

imate) Jensen-Shannon divergence. Therefore, qθ is pushed to be closer to the target pX .

In practice, we approximate the solution to the minimax problem Eq. (2.1) by iteratively

training Gθ and Dη [1]. Each model can be updated individually by backpropagating the

gradient of the loss function to each model’s parameters.

Since their invention in 2014, GANs have attracted a great deal of interest due to

their ability to generate realistic, crisp, and original examples of images [75, 76] and text

[77]. This has made them useful in various image and video processing tasks, such as

frame prediction [78], image super-resolution [79], and image-to-image translation [80].

GANs have also been applied in dialogue systems or chatbots, where artificially generated

but realistic data is needed. In addition, GANs implicitly learn a latent, low-dimensional

representation of arbitrary high-dimensional data. Such embeddings have been hugely

successful in the area of natural language processing (e.g. word2vec [81]). GANs have

the potential to provide an unsupervised solution for learning representations that capture

13

semantics of various arbitrary data structures and applications. This can be used in a

range of applications, such as image manipulation [82] and defending against adversarial

examples [83].

The promise of GANs offers us a new opportunity for solving the data sharing prob-

lem. This motives us to ask:

Can we build a high-fidelity and privacy-preserving data sharing tool with GANs?

While we do not claim that GANs are the best solution for data sharing, GANs show

promise in addressing the long-standing fidelity problems. The dissertation focuses on

exploring how we can leverage the capabilities of GANs to build a more effective data

sharing tool, so as to unlock the full potential of data in industry and academia.

2.3 Open Questions

Despite the promise of generative adversarial networks (GANs), there are still some chal-

lenges in realizing the goal.

Fidelity. Although GANs have achieved state-of-the-art sample fidelity in image domains,

there are still some fidelity problems. The two biggest and well-known fidelity issues are

mode collapse and training stability [44]. Mode collapse refers to the problem where the

diversity of the generated samples is worse than that of the real samples. Training stability

refers to the phenomenon during which small changes in hyper-parameter or randomness in

optimization can cause training to fail altogether, leading to poor samples being generated.

These problems are believed to stem from the fundamental training algorithms of GANs.

In Chapter 3, we will discuss our theoretical analysis of these problems and the practical

algorithms for mitigating them.

Privacy. As GANs are a relatively new technology, their privacy properties are not

yet well understood. For example, how well do GANs protect the sensitive information

in original data, such as user information or business secrets? If GANs are not privacy-

preserving by default, can they be improved to better protect privacy? In Chapter 4, we

will discuss our theoretical analysis of these questions and our mitigation approaches for

making GANs more privacy-preserving.

Applications. GANs were initially designed for and have been most successful in image

domains. However, real-world data is much more diverse and complex. Adjusting GANs

to those real-world data sharing applications is an open question. In Chapter 5, we will

14

discuss how to apply GANs to time series data in various domains such as networking and

systems. Then we will conclude by discussing the design and implementation of a unified

library, containing all the fundamental and application advances in this dissertation for

future applications.

15

Chapter 3

Fidelity Foundations

In this chapter, we first give an overview on the fundamental fidelity issues of GANs

(§ 3.1). We then give our theoretical analysis and algorithmic solutions for the two biggest

fidelity issues of GANs: mode collapse (§ 3.2) and training instability (§ 3.3). Finally, we

conclude this chapter in § 3.4.

3.1 Overview of Fidelity Challenges

Despite their significant improvement in fidelity compared to prior data sharing tools (as

discussed in § 2.2), GANs still suffer from some fidelity issues. The two biggest issues

acknowledged in the community [44] are mode collapse and training instability.

Mode collapse refers to the lack of diversity in generated samples. A common manifes-

tation of mode collapse is the observation that GANs commonly miss some of the modes

when trained on multimodal distributions. In Fig. 3.1, we train GANs on a 2D Grid

Dataset sampled from a mixture of 25 two-dimensional spherical Gaussians with means

(−4 + 2i,−4 + 2j) and variances 0.0025 in each dimension for i, j ∈ {0, 1, 2, 3, 4}. GANs

are only able to generate samples from a subset of modes. Another example is shown in

Fig. 3.2, where we train GANs on a Stacked MNIST Dataset in which each image consists

of three randomly-selected MNIST images [84] that are stacked into a 28× 28× 3 image in

RGB. Again, we see that GANs produce many similar and low-quality images. This prob-

lem has been widely documented in many GAN applications. For instance, when trained

on hand-written digits with ten modes, the generator might fail to produce some of the

digits [85]. Similarly, in tasks that translate a caption into an image, generators have been

shown to generate series of nearly-identical images [86].

Training instability refers to the phenomenon that the sample fidelity of GANs fluc-

tuates a lot during training, and small changes in hyper-parameters and even randomness

in the optimization can cause the training to fail, resulting in poor generated samples. It

is believed that this issue is primarily due to the alternating updates of the generator and

16

Target distribution GAN PacGAN2

Figure 3.1: Scatter plot of the 2D samples from the true distribution (left) of 2D Grid
Dataset and the learned generators using GAN (middle) and PacGAN2 (right). PacGAN2
captures all of the 25 modes.

discriminator in GANs. Such variability makes it challenging to evaluate when training

has converged, let alone which model one should choose among those obtained throughout

the training process. Empirically, this observation seems to hold even with improved GAN

optimization techniques, such as unrolled GANs [87], despite recent work showing that

gradient-descent-based optimization of GANs is locally stable [88].

In practice, mode collapse and training instability sometimes occur simultaneously,

or independently of one another [44]. In this dissertation, instead of coupling these two

issues together, we study them in isolation in order to gain a deeper understanding of these

issues and their causes.

3.2 Improving Sample Diversity

In this section, we first present our theoretical analysis of the mode collapse problem

(§ 3.2.1). Based on the theoretical insights, we introduce PacGAN, our practical algorithm

for mitigating mode collapse issue (§ 3.2.2), and its experimental results (§ 3.2.3). Finally,

we summarize the contributions and discuss future work (§ 3.2.4).

17

Target distribution DCGAN PacDCGAN2

Figure 3.2: True distribution (left), DCGAN generated samples (middle), and PacDC-
GAN2 generated samples (right) from the Stacked MNIST Dataset show PacDCGAN2
captures more diversity while producing sharper images.

3.2.1 Theoretical Framework for Analyzing Sample Diversity

In this section, we first propose a theoretical framework for understanding mode collapse

problem by drawing the connections to hypothesis testing. We then present the theoretical

analysis of packing, a simple idea to alleviate mode collapse.

Notations and assumptions. For the simplicity of notation, throughout this section,

we use P to denote the ground-truth distribution pX and Q to denote the generated

distribution qθ. We focus on the analysis under the following setting: (a) the optimal

discriminator over a family of all measurable functions; (b) the population expectation;

and (c) the 0-1 loss function of the form maxη Ex∼P [I (Dη (x))] + Ey∼Q [1− I (Dη (y))],

subject to Dη (x) ∈ {0, 1}.
This discriminator provides (an approximation of) the total variation distance, and

the generator tries to minimize the total variation distance dTV (P∥Q), as widely known

in the GAN literature [75]. The reason we make this assumption is primarily for clarity

and analytical tractability: total variation distance highlights the effect of packing in a

way that is cleaner and easier to understand than if we were to analyze Jensen-Shannon

divergence.

18

Mode Collapse Definition

We first provide a formal mathematical definition of mode collapse, which leads to a two-

dimensional representation of any pair of distributions (P,Q) as a mode-collapse region.

This region representation provides not only conceptual clarity regarding mode collapse,

but also proof techniques that are essential to proving our main results.

Definition 3.2.1.1. A target distribution P and a generator Q exhibit (ε, δ)-mode collapse

for 0 ≤ ε < δ ≤ 1 if there exists a set S ⊆ X such that P (S) ≥ δ and Q(S) ≤ ε.

Intuitively, larger δ and smaller ε indicate more severe mode collapse. That is, if

a large portion of the target P (S) ≥ δ in some set S in the domain X is missing in the

generator Q(S) ≤ ε, we declare (ε, δ)-mode collapse. Similarly, when we change the role

of P and Q, and have P (S) ≤ ε and Q(S) ≥ δ, we say P and Q exhibit (ϵ, δ)-mode

augmentation.

A key observation is that two pairs of distributions can have the same total variation

distance while exhibiting very different mode collapse patterns. To see this, consider a toy

example in Fig. 3.3, with a uniform target distribution P = U([0, 1]) and a mode collapsing

generator Q1 = U([0.2, 1]) and a non mode collapsing generator Q2 = 0.6U([0, 0.5]) +

1.4U([0.5, 1]).

The appropriate way to precisely represent mode collapse is to visualize it through

a two-dimensional region we call the mode collapse region. For a given pair (P,Q), the

corresponding mode collapse region R(P,Q) is defined as the convex hull of the region of

points (ε, δ) such that (P,Q) exhibit (ε, δ)-mode collapse, as shown in Fig. 3.3:

R(P,Q) ≜ conv
({

(ε, δ)
∣∣ δ > ε and (P,Q) has (ε, δ)-mode collapse

})
.

Connection to hypothesis testing. We show that the proposed mode collapse region

is equivalent to a similar notion in binary hypothesis testing. This allows us to bring

powerful mathematical tools from this mature area in statistics and information theory—

in particular, the data processing inequalities originating from the seminal work of Blackwell

[47]. We make this connection precise, which gives insights on how to interpret the mode

collapse region, and list the properties and techniques which dramatically simplify the

proof.

19

1

1

1.25

0.2

1

1

1

1

0.6

1.4

0.5

P

Q1

Q2

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

ε

δ

 0

 0.5

 1

 0 0.5 1

R(P,Q2)

ε

δ

Figure 3.3: A formal definition of (ε, δ)-mode collapse and its accompanying region rep-
resentation captures the intensity of mode collapse for generators Q1 with mode collapse
and Q2 which does not have mode collapse, for a toy example distributions P , Q1, and Q2

shown on the left. The region of (ε, δ)-mode collapse that is achievable is shown in grey.

More specifically, there is a simple one-to-one correspondence between mode collapse

region as we define it in Definition 3.2.1.1 (e.g., Fig. 3.3) and the ROC curve studied

in binary hypothesis testing. In the classical testing context, there are two hypotheses,

h = 0 or h = 1, and we make observations via some stochastic experiment in which

our observations depend on the hypothesis. Let X denote this observation. One way to

visualize such an experiment is using a two-dimensional region defined by the corresponding

type I and type II errors. Concretely, an ROC curve of a binary hypothesis testing is

obtained by plotting the largest achievable true positive rate (TPR), i.e. 1−probability of

missed detection, or equivalently 1− type II error, on the vertical axis against the false

positive rate (FPR), i.e probability of false alarm or equivalently type I error, on the

horizontal axis.

We can map this binary hypothesis testing setup directly to the GAN context. Sup-

pose the null hypothesis h = 0 denotes observations being drawn from the generated distri-

bution Q, and the alternate hypothesis h = 1 denotes observations being drawn from the

true distribution P . Given a sample X from this experiment, suppose we make a decision

on whether the sample came from P or Q based on a rejection region Sreject, such that we

reject the null hypothesis if X ∈ Sreject. FPR (i.e. Type I error) is when the null hypothesis

is true but rejected, which happens with P(X ∈ Sreject|h = 0), and TPR (i.e. 1-type II error)

20

is when the null hypothesis is false but accepted, which happens with P(X ∈ Sreject|h = 1).

Sweeping through the achievable pairs (P(X ∈ Sreject|h = 1),P(X ∈ Sreject|h = 0)) for all

rejection sets, this defines a two-dimensional convex region that we call hypothesis testing

region. The upper boundary of this convex set is the ROC curve. An example of ROC

curves for the two toy examples (P,Q1) and (P,Q2) from Fig. 3.3 are shown in Fig. 3.4.

 0

 0.5

 1

 0 0.5 1

R(P,Q1)

ε

δ

Mode collapse region for (P,Q1)

 0

 0.5

 1

 0 0.5 1

R(P,Q2)

ε

δ

Mode collapse region for (P,Q2)

 0

 0.5

 1

 0 0.5 1

False Positive Rate (FPR)

True Positive Rate

Hypothesis testing region for (P,Q1)

 0

 0.5

 1

 0 0.5 1

False Positive Rate (FPR)

True Positive Rate

Hypothesis testing region for (P,Q2)

Figure 3.4: The hypothesis testing region of (P,Q) (bottom row) is the same as the mode
collapse region (top row). We omit the region above y = x axis in the hypothesis testing
region as it is symmetric. The regions for mode collapsing toy example in Fig. 3.3 (P,Q1)
are shown on the left and the regions for the non mode collapsing example (P,Q2) are
shown on the right.

In defining the region, we allow stochastic decisions, such that if a point (x, y) and

another point (x′, y′) are achievable TPR and FPR, then any convex combination of those

points are also achievable by randomly choosing between those two rejection sets. Hence,

the resulting hypothesis testing region is always a convex set by definition. We also show

only the region below the 45-degree line passing through (0, 0) and (1, 1), as the other

21

region is symmetric and redundant. For a given pair (P,Q), there is a very simple relation

between its mode collapse region and hypothesis testing region.

Remark 3.2.1.1 (Equivalence). For a pair of target P and generator Q, the hypothesis

testing region is the same as the mode collapse region.

This follows immediately from the definition of mode collapse region in Defini-

tion 3.2.1.1. If there exists a set S such that P (S) ≥ δ and Q(S) ≤ ε, then for the

choice of Sreject = S in the binary hypothesis testing, there the point (P(X ∈ Sreject|h =

0) = ε,P(X ∈ Sreject|h = 1) = δ) in the hypothesis testing region is achievable. The

converse is also true, in the case we make deterministic decisions on Sreject. As the mode

collapse region is defined as a convex hull of all achievable points, the points in the hypoth-

esis testing region that require randomized decisions can also be covered. For example, the

hypothesis testing regions of the toy examples from Fig. 3.3 are shown below in Fig. 3.4.

Properties of the mode collapse region. Given the equivalence between the mode

collapse region and the binary hypothesis testing region, several important properties follow

as corollaries. First, the hypothesis testing region is a sufficient statistic for the purpose

of binary hypothesis testing from a pair of distributions (P,Q). This implies, among other

things, that all f -divergences can be derived from the region. In particular, for the purpose

of GAN with 0-1 loss, we can define total variation as a geometric property of the region,

which is crucial to proving our main results.

Remark 3.2.1.2 (Total variation distance). The total variation distance between P and

Q is the intersection between the vertical axis and the tangent line to the upper boundary

of R(P,Q) that has a slope of one, as shown in Fig. 3.5.

This follows from the equivalence of the mode collapse region (Remark 3.2.1.1) and

the hypothesis testing region. This geometric definition of total variation allows us to

enumerate over all pairs (P,Q) that have the same total variation τ in our proof, via

enumerating over all regions that touch the line that has a unit slope and a shift τ (see

Fig. A.2).

The major strength of the region perspective, as originally studied by Blackwell [47],

is in providing a comparison of stochastic experiments. In our GAN context, consider com-

paring two pairs of target distributions and generators (P,Q) and (P ′, Q′) as follows. First,

a hypothesis h is drawn, choosing whether to produce samples from the true distribution,

in which case we say h = 1, or to produce samples from the generator, in which case we

22

 0

 0.5

 1

 0 0.5 1

~w�dTV(P,Q2)

R(P,Q2)

ε

δ

slope = 1

Figure 3.5: Total variation distance is one among many properties of (P,Q2) that can be
directly read off of the region R(P,Q).

say h = 0. Conditioned on this hypothesis h, we use X to denote a random variable that is

drawn from the first pair (P,Q) such that fX|h(x|1) = P (x) and fX|h(x|0) = Q(x). Simi-

larly, we use X ′ to denote a random sample from the second pair, where fX′|h(x|1) = P ′(x)

and fX′|h(x|0) = Q′(x). Note that the conditional distributions are well-defined for both

X and X ′, but there is no coupling defined between them. Suppose h is independently

drawn from the uniform distribution.

Definition 3.2.1.2. For a given coupling between X and X ′, we say X dominates X ′ if

they form a Markov chain h–X–X ′.

The data processing inequality in the following remark shows that if we further process

the output samples from the pair (P,Q) then the further processed samples can only

have less mode collapse. Processing output of stochastic experiments has the effect of

smoothing out the distributions, and mode collapse, which corresponds to a peak in the

pair of distributions, are smoothed out in the processing down the Markov chain.

Remark 3.2.1.3 (Data processing inequality). The following data processing inequality

holds for the mode collapse region. For two coupled target-generator pairs (P,Q) and

(P ′, Q′), if X dominates another pair X ′, then

R(P ′, Q′) ⊆ R(P,Q) .

This is expected, and follows directly from the equivalence of the mode collapse region

(Remark 3.2.1.1) and the hypothesis testing region, and corresponding data processing

23

inequality of hypothesis testing region in [89]. What is perhaps surprising is that the

reverse is also true.

Remark 3.2.1.4 (Reverse data processing inequality). The following reverse data pro-

cessing inequality holds for the mode collapse region. For two paired marginal distributions

X and X ′, if

R(P ′, Q′) ⊆ R(P,Q) ,

then there exists a coupling of the random samples from X and X ′ such that X dominates

X ′, i.e. they form a Markov chain h–X–X ′.

This follows from the equivalence between the mode collapse region and the hypoth-

esis testing region (Remark 3.2.1.1) and Blackwell’s celebrated result on comparisons of

stochastic experiments [47] (see [89] for a simpler version of the statement). This region

interpretation, and the accompanying (reverse) data processing inequality, abstracts away

all the details about P and Q, enabling us to use geometric analysis tools to prove our

results. In proving our main results, we will mainly rely on the following remark, which is

the corollary of the Remark 3.2.1.3 and Remark 3.2.1.4.

Remark 3.2.1.5. For all positive integers m, the dominance of regions are preserved under

taking m-th order product distributions, i.e. if R(P ′, Q′) ⊆ R(P,Q), then R((P ′)m, (Q′)m) ⊆
R(Pm, Qm).

The Effect of “Packing”

As showed previously in Fig. 3.3 , a vanilla GAN discriminator, observing only the TV

distance between generator distributions Q and the true distribution P , cannot distinguish

between two candidate generators Q1 and Q2 with dTV (P,Q1) = dTV (P,Q2), but different

mode collapse regions. The key insight of this work is that by instead considering product

distributions, the total variation distance dTV (Pm, Qm) varies in a way that is closely tied

to the mode collapse regions for (P,Q). For instance, Fig. 3.6 (left) shows an achievable

range of dTV(Pm, Qm) conditioned on that dTV(P,Q) = τ for τ = 1.1. Within this

achievable range, some pairs (P,Q) have rapidly increasing total variation, occupying the

upper part of the region (shown in red, middle panel of Fig. 3.6), and others have slowly

increasing total variation, occupying the lower part (shown in blue) in the right panel of

Fig. 3.6. We formally show in the following that there is a fundamental connection between

total variation distance evolution and degree of mode collapse. Namely, distributions with

24

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

dTV(Pm, Qm)

degree of packing m

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

(0.00, 0.1)-mode collapse

degree of packing m

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

no (0.07, 0.1)-mode collapse

degree of packing m

Figure 3.6: The range of dTV(Pm, Qm) achievable by pairs with dTV(P,Q) = τ , for a
choice of τ = 0.11, defined by the solutions of the optimization Eq. (A.1) provided in
Theorem A.1.1.1 in the Appendix (left panel). The range of dTV(Pm, Qm) achievable by
those pairs that also have (ε = 0.00, δ = 0.1)-mode collapse (middle panel). A similar range
achievable by pairs of distributions that do not have (ε = 0.07, δ = 0.1)-mode collapse or
(ε = 0.07, δ = 0.1)-mode augmentation (right panel). Pairs (P,Q) with strong mode
collapse occupy the top region (near the upper bound) and the pairs with weak mode
collapse occupy the bottom region (near the lower bound).

strong mode collapse occupy the upper region, and hence will be penalized by a packed

discriminator.

Evolution of total variation distances with mode collapse. We analyze how the

total variation evolves for the set of all pairs (P,Q) that have the same total variation

distances τ when unpacked, with m = 1, and have (ε, δ)-mode collapse for some 0 ≤ ε <

δ ≤ 1. The solution of the following optimization problem gives the desired range:

min
P,Q

or max
P,Q

dTV(Pm, Qm) (3.1)

subject to dTV(P,Q) = τ

(P,Q) has (ε, δ)-mode collapse ,

where the maximization and minimization are over all probability measures P and Q,

and the mode collapse constraint is defined in Definition 3.2.1.1. We provide the optimal

solution analytically and establish that mode-collapsing pairs occupy the upper part of the

total variation region; that is, total variation increases rapidly as we pack more samples

together (Fig. 3.6, middle panel).

Theorem 3.2.1.1. For all 0 ≤ ε < δ ≤ 1 and an integer m, if 1 ≥ τ ≥ δ − ε then

25

the solution to the maximization in Eq. (3.1) is 1 − (1 − τ)m, and the solution to the

minimization is

min
{

min
0≤α≤1− τδ

δ−ε

dTV

(
Pinner1(α)m, Qinner1(α)m

)
,

min
1− τδ

δ−ε
≤α≤1−τ

dTV

(
Pinner2(α)m, Qinner2(α)m

)}
,

where Pinner1(α)m, Qinner1(α)m, Pinner2(α)m, and Qinner2(α)m are the m-th order product

distributions of discrete random variables distributed as

Pinner1(δ, α) =
[
δ, 1− α− δ, α

]
, (3.2)

Qinner1(ε, α, τ) =
[
ε, 1− α− τ − ε, α + τ

]
, (3.3)

Pinner2(α) =
[
1− α, α

]
, (3.4)

Qinner2(α, τ) =
[
1− α− τ, α + τ

]
. (3.5)

If τ < δ − ε, then the optimization in Eq. (3.1) has no solution and the feasible set is an

empty set.

One implication is that distribution pairs (P,Q) at the top of the total variation

evolution region are those with the strongest mode collapse. Another implication is that a

pair (P,Q) with strong mode collapse (i.e., with larger δ and smaller ε in the constraint)

will be penalized more under packing, and hence a generator minimizing an approximation

of dTV(Pm, Qm) will be unlikely to select a distribution that exhibits such strong mode

collapse.

Evolution of total variation distances without mode collapse. We next analyze

how the total variation evolves for the set of all pairs (P,Q) that have the same total

variations distances τ when unpacked, with m = 1, and do not have (ε, δ)-mode collapse

for some 0 ≤ ε < δ ≤ 1. Because of the symmetry of the total variation distance, mode

collapse for (Q,P) is equally damaging as mode collapse of (P,Q), when it comes to how fast

total variation distances evolve. Hence, we characterize this evolution for those family of

pairs of distributions that do not have either mode collapses. The solution of the following

26

optimization problem gives the desired range of total variation distances:

min
P,Q

or max
P,Q

dTV(Pm, Qm) (3.6)

subject to dTV(P,Q) = τ ,

(P,Q) does not have (ε, δ)-mode collapse,

(Q,P) does not have (ε, δ)-mode collapse,

We provide thte optimal solution analytically and establish that the pairs (P,Q) with weak

mode collapse will occupy the bottom part of the evolution of the total variation distances

(see Fig. 3.6 right panel), and also will be penalized less under packing. Hence a generator

minimizing (approximate) dTV(Pm, Qm) is likely to generate distributions with weak mode

collapse.

Theorem 3.2.1.2. If δ + ε ≤ 1 and δ − ε ≤ τ ≤ (δ − ε)/(δ + ε) then the solution to the

maximization in Eq. (3.6) is

max
α+β≤1−τ, ετ

δ−ε
≤α,β

dTV

(
Pouter1(α, β)m, Qouter1(α, β)m

)
,

where Pouter1(α, β)m and Qouter1(α, β)m are the m-th order product distributions of discrete

random variables distributed as Pouter1(α, β) = [α(δ−ε)−ετ
α−ε , α(α+τ−δ)

α−ε , 1−τ−α−β, β, 0] and

Qouter1(α, β) = [0, α, 1− τ −α−β, β(β+τ−δ)
β−ε , β(δ−ε)−ετ

β−ε]. The solution to the minimization

in Eq. (3.6) is

min
ετ
δ−ε

≤α≤1− δτ
δ−ε

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
,

where Pinner(α) and Qinner(α, τ) are defined as in Theorem A.1.1.1 in the Appendix.

We can prove the exact solution of the optimization for all values of ε and δ, which

we provide in the Appendix. We refer also to the appendix of more illustrations of regions

occupied by various choices of ε and δ for mode collapsing distributions, and non mode

collapsing regions.

27

Figure 3.7: PacGAN(m) augments the input layer by a factor of m. The number of weights
between the first two layers are increased to preserve the mother architecture’s connectivity.
Packed samples are concatenated and fed to the input layer; grid-patterned nodes are input
nodes for the second sample.

3.2.2 PacGAN for Improving Sample Diversity

There are many ways to implement the idea of packing, each with tradeoffs. In this

section, we present a simple packing framework that serves as the basis for our empirical

experiments and a concrete example of packing. A primary reason for this architectural

choice is to emphasize only the effect of packing in numerical experiments, and isolate it

from any other effects that might result from other (more sophisticated) changes to the

architecture. However, our analysis in § 3.2.1 is agnostic to the packing implementation,

and we discuss potential alternative packing architectures in § 3.2.4, especially those that

explicitly impose permutation invariance.

We start with an existing GAN, defined by a generator architecture, a discriminator

architecture, and a loss function. We call this triplet the mother architecture. The PacGAN

framework maintains the same generator architecture, loss function, and hyper-parameters

as the mother architecture. However, instead of using a discriminator Dη (x) that maps a

single sample (either real or generated) to a (soft) label, we use an augmented discriminator

Dη (x1, x2, . . . , xm) that maps m samples to a single (soft) label. These m samples are

drawn independently from the same distribution—either real (jointly labelled Y = 1) or

generated (Y = 0). We refer to the concatenation of samples with the same label as packing,

the resulting discriminator as a packed discriminator, and the number m of concatenated

samples as the degree of packing. The proposed approach can be applied to any existing

GAN architecture and any loss function, as long as it uses a discriminator D(X) that

classifies a single input sample. We use the notation “Pac(X)(m)” where (X) is the name

of the mother architecture, and (m) is is the packing degree. For example, if we take an

original GAN and feed the discriminator three packed samples, we call this “PacGAN3”.

28

We implement packing by keeping all hidden layers of the discriminator identical to

the mother architecture, and increasing the number of nodes in the input layer by a factor

of m. For example, in Fig. 3.7, we start with a fully-connected, feed-forward discriminator.

Each sample x is two-dimensional, so the input layer has two nodes. Under PacGAN2,

we multiply the size of the input layer by the packing degree m = 2, and the connections

to the first hidden layer are adjusted so that the first two layers remain fully-connected,

as in the mother architecture. The grid-patterned nodes in Fig. 3.7 represent input nodes

for the second sample. Similarly, when packing a DCGAN [90], which uses convolutional

neural networks for both the generator and the discriminator, we simply stack the images

into a tensor of depth m. For instance, the discriminator for PacDCGAN4 on the MNIST

dataset of handwritten images [91] would take an input of size 28 × 28 × 4, since each

individual black-and-white MNIST image is 28 × 28 pixels. Only the input layer and the

number of weights in the corresponding first convolutional layer will increase in depth by a

factor of 4. As in standard GANs, we train the packed discriminator with a bag of samples

from the real data and the generator. However, each minibatch in the stochastic gradient

descent now consists of packed samples (x1, x2, . . . , xm, Y), which the discriminator jointly

classifies. Intuitively, packing helps the discriminator detect mode collapse because lack of

diversity is more obvious in a set of samples than in a single sample.

3.2.3 Experiments

On standard benchmark datasets, we compare PacGAN to several baseline GAN archi-

tectures, some explicitly designed to mitigate mode collapse: GAN [75], minibatch dis-

crimination (MD) [85], DCGAN [92], VEEGAN [5], Unrolled GANs [87], and ALI [93].

We also implicitly compare against BIGAN [94], which is conceptually identical to ALI.

To isolate the effects of packing, we make minimal choices in the architecture and hyper-

parameters of our packing implementation. Our goal is to reproduce experiments from

the literature, apply packing to the simplest baseline GAN, and observe how packing af-

fects performance. Whenever possible, we use the exactly same choice of architecture,

hyper-parameters, and loss function as a baseline in each experiment; we change only the

discriminator to accept packed samples. All code to reproduce our experiments can be

found at https://github.com/fjxmlzn/PacGAN.

Metrics. We measure several previously-used metrics. The first is number of modes that

are produced by a generator [94, 87, 5]. In labelled datasets, this number can be evaluated

29

https://github.com/fjxmlzn/PacGAN

using a third-party trained classifier that classifies the generated samples [5]. A second met-

ric used in [5] is the number of high-quality samples, which is the proportion of the samples

that are within x standard deviations from the center of a mode. Finally, we measure

the reverse Kullback-Leibler divergence between the induced distribution from generated

samples and the induced distribution from the real samples. Each of these metrics has

shortcomings—for example, the number of observed modes ignores class imbalance, and

all of the metrics assume the modes are known a priori.

Datasets. We use synthetic and real datasets. The 2D Ring Dataset [5] is a mixture

of eight two-dimensional spherical Gaussians with means (cos((2π/8)i), sin((2π/8)i)) and

variances 10−4 in each dimension for i ∈ {1, . . . , 8}. The 2D Grid Dataset [5] is a mixture

of 25 two-dimensional spherical Gaussians with means (−4 + 2i,−4 + 2j) and variances

0.0025 in each dimension for i, j ∈ {0, 1, 2, 3, 4}. The MNIST dataset [91] consists of 70K

images of handwritten digits, each 28× 28 pixels. Unmodified, this dataset has 10 modes

(digits). As in [87, 5], we augment the number of modes by stacking the images: we

generate a new dataset of 128K images where each image consists of three random MNIST

images stacked into a 28× 28× 3 RGB image. This new Stacked MNIST Dataset has

(with high probability) 1000 = 10× 10× 10 modes. Finally, we include experiments on the

CelebA dataset, which is a collection of 200K facial images of celebrities [2].

Synthetic data experiments

Our first experiment measures the effect of the number of discriminator parameters on

mode collapse. Packed architectures have more discriminator nodes (and parameters)

than the mother architecture, which could artificially mitigate mode collapse by giving

the discriminator more capacity. We compare this effect to the effect of packing on the

2D grid dataset. In Fig. 3.8, we evaluate the number of modes recovered and reverse KL

divergence for ALI, GAN, MD, and PacGAN, while varying the number of total parameters

in each architecture (discriminator and encoder if one exists). For MD, the metrics first

improve and then degrade with the number of parameters. We suspect that this may

because MD is very sensitive to experiment settings, as the same architecture of MD has

very different performance on 2D Grid Dataset and 2D Ring Dataset. For ALI, GAN and

PacGAN, despite varying the number of parameters by an order of magnitude, we do not

see significant evidence of the metrics improving with the number of parameters. This

suggests that the advantages of PacGAN and ALI compared to GAN do not stem from

30

having more parameters. Packing also seems to increase the number of modes recovered

and decrease the reverse KL divergence. Fig. 3.1 gives visualization of the results.

0 100000 200000 300000 400000 500000 600000 700000 800000
15

16

17

18

19

20

21

22

23

24

25

GAN
PacGAN2
PacGAN3
PacGAN4
Minibatch Discrimination
ALI

Modes recovered (higher is better)

Parameter Count
0 100000 200000 300000 400000 500000 600000 700000 800000

0.0

0.2

0.4

0.6

0.8

1.0 GAN
PacGAN2
PacGAN3
PacGAN4
Minibatch Discrimination
ALI

Reverse KL divergence (lower is better)

Parameter Count

Figure 3.8: Effect of number of parameters on evaluation metrics.

Stacked MNIST experiments

For our stacked MNIST experiments, we generate samples. Each of the three channels in

each sample is classified by a pretrained third-party MNIST classifier, and the resulting

three digits determine which of the 1000 modes the sample belongs to. We measure the

number of modes captured, as well as the KL divergence between the generated distribution

over modes and the expected (uniform) one.

In the first experiment, we replicate Table 2 from [5], which measured the number of

observed modes in a generator trained on the stacked MNIST dataset, as well as the KL

divergence of the generated mode distribution. In line with [5], we used a DCGAN-like

architecture for these experiments1. Our results are shown in Table 3.1. The first four rows

are copied directly from [5]. The last three rows are computed using a basic DCGAN, with

packing in the discriminator. We find that packing gives good mode coverage, reaching all

1,000 modes in every trial. Fig. 3.2 also confirms that PacGAN not only increases sample

diversity, but also improves sample quality. Again, packing the simplest DCGAN fully

captures all the modes in the benchmark test, so we do not pursue packing more complex

baseline architectures. We also observe that MD is very unstable throughout training,

1https://github.com/carpedm20/DCGAN-tensorflow

31

https://github.com/carpedm20/DCGAN-tensorflow

which makes it capture even less modes than GAN. One factor that contributes to MD’s

instability may be that MD requires too many parameters. The number of discriminator

parameters in MD is 47,976,773, whereas GAN has 4,310,401 and PacGAN4 only needs

4,324,801.

Stacked MNIST
Modes KL

DCGAN [92] 99.0 3.40
ALI [93] 16.0 5.40
Unrolled GAN [87] 48.7 4.32
VEEGAN [5] 150.0 2.95
Minibatch Discrimination [85] 24.5±7.67 5.49±0.418

DCGAN (our implementation) 78.9±6.46 4.50±0.127
PacDCGAN2 (ours) 1000.0±0.00 0.06±0.003
PacDCGAN3 (ours) 1000.0±0.00 0.06±0.003
PacDCGAN4 (ours) 1000.0±0.00 0.07±0.005

Table 3.1: Two measures of mode collapse proposed in [5] for the stacked MNIST dataset:
number of modes captured by the generator and reverse KL divergence over the generated
mode distribution. The DCGAN, PacDCGAN, and MD results are averaged over 10 trials,
with standard error reported.

CelebA Experiments

In this experiment, we measure the diversity of images generated from the celebA dataset

as proposed by Arora et al. [95]. They suggest measuring the diversity by estimating the

probability of collision in a finite batch of images sampled from the generator. If there exists

at least one pair of near-duplicate images in the batch it is declared to have a collision.

To detect collision in a batch of samples, they select the 20 closest pairs from it according

to the Euclidean distance in pixel space, and then visually identify if any of them would

be considered duplicates by humans. For visual identification, we take majority vote of

three human reviewers for each batch of samples. To estimate the probability we repeat

the experiment 20 times.

We use DCGAN- unconditional, with JSD objective as described in [92] as the base

architecture. We perform the experiment for different sizes of the discriminator while

fixing the other hyper-parameters. The DCGAN- [92] uses 4 CNN layers with the number

32

of output channels of each layer being dim × 1, 2, 4, 8. Thus the discriminator size is

proportional to dim2. Table 3.2 shows probability of collision in a batch of size 1024

for DCGAN and PacDCGAN2 for dim ∈ {16, 32, 64, 80}. Packing significantly improves

diversity of samples. If the size of the discriminator is small, then packing also improves

quality of the samples. Fig. 3.9 shows samples generated from DCGAN and PacDCGAN2

for dim = 16. We note that DCGAN and PacDCGAN2 use approximately same number

of parameters, 273K and 274K respectively.

discriminator size probability of collision

DCGAN PacDCGAN2

d2 1 0.3

4 d2 0.4 0

16 d2 0.8 0

25 d2 0.6 0.2

Table 3.2: Probability of at least one pair of near-duplicate images being present in a batch
of 1024 images generated from DCGAN and PacDCGAN2 on celebA dataset show that
PacDCGAN2 generates more diverse images.

DCGAN PacDCGAN2

Figure 3.9: CelebA samples generated from DCGAN (left) and PacDCGAN2 (right) show
PacDCGAN2 generates more diverse and sharper images.

3.2.4 Discussions

In this section, we propose a packing framework that theoretically and empirically mitigates

mode collapse with low overhead. Our analysis leads to several interesting open questions,

33

including how to apply these analysis techniques to more general classes of loss functions

such as Jensen-Shannon divergence and Wasserstein distances. Another important question

is what packing architecture to use. For instance, a framework that provides permutation

invariance may give better results such as graph neural networks [96, 97, 98] or deep sets

[99].

3.3 Improving Training Stability

Many approaches have been proposed for improving the stability of GANs, including dif-

ferent architectures [100, 41, 101], loss functions [102, 103, 104, 105], and various types of

regularizations/normalizations [43, 106, 107]. One of the most successful proposals to date

is called spectral normalization (SN) [43, 108, 48]. SN forces each layer of the discriminator

to have unit spectral norm during training. This has the effect of controlling the Lipschitz

constant of the discriminator, which is empirically observed to improve the stability of GAN

training [43]. Despite the successful applications of SN [101, 109, 110, 111, 112, 113, 114],

to date, it remains unclear precisely why this specific normalization is so effective.

In this section, we first present our theoretical analysis of spectral normalization

(§ 3.3.1). Based on the theoretical insights, we introduce BSSN, our practical algorithm

for further stabilizing GAN training and improving sample fidelity (§ 3.3.2), and its exper-

imental results (§ 3.3.3). Finally, we summarize the contributions and discuss future work

(§ 3.3.4).

3.3.1 Theoretical Analysis of Spectral Normalization

We first present the preliminaries on spectral normalization, and then provide our theoret-

ical results.

Preliminaries

The instability of GANs is believed to be predominantly caused by poor discriminator

learning [102, 115]. We therefore focus in this work on the discriminator. We adopt the

same model as [43]. Consider a discriminator with L internal layers:

Dη (x) = aL ◦ lwL ◦ aL−1 ◦ lwL−1 ◦ . . . ◦ a1 ◦ lw1(x) (3.7)

34

where x denotes the input to the discriminator and η = {w1, w2, ..., wL} the weights;

ai (i = 1, ..., L− 1) is the activation function in the i-th layer, which is usually element-

wise ReLU or leaky ReLU in GANs [1]. aL is the activation function for the last layer,

which is sigmoid for the vanilla GAN [1] and identity for WGAN-GP [104]; lwi is the linear

transformation in i-th layer, which is usually fully-connected or a convolutional neural

network [1, 100]. Like prior work on the theoretical analysis of (spectral) normalization

[43, 48, 116, 117], we do not model bias terms.

Lipschitz regularization and spectral normalization. Prior work has shown that reg-

ularizing the Lipschitz constant of the discriminator ∥Dη∥Lip improves the stability of GANs

[103, 104, 105]. For example, WGAN-GP [104] adds a gradient penalty (∥∇Dη (x̃)∥ − 1)2

to the loss function, where x̃ = αx + (1 − α)Gθ (z) and α ∼ U (0, 1) to ensure that the

Lipschitz constant of the discriminator is bounded by 1.

Spectral normalization (SN) takes a different approach. For fully connected layers

(i.e., lwi(x) = wix), it regularizes the weights wi to ensure that spectral norm ∥wi∥sp = 1 for

all i ∈ [1, L], where the spectral norm ∥wi∥sp is defined as the largest singular value of wi.

This bounds the Lipschitz constant of the discriminator since ∥Dη∥Lip ≤
∏L

i=1 ∥lwi∥Lip ·∏L
i=1 ∥ai∥Lip ≤

∏L
i=1 ∥wi∥sp ·

∏L
i=1 ∥ai∥Lip ≤ 1, as ∥lwi∥Lip ≤ ∥wi∥sp and ∥ai∥Lip ≤ 1

for networks with (leaky) ReLU as activation functions for the internal layers and iden-

tity/sigmoid as the activation function for the last layer [43]. Prior work has theoretically

connected the generalization gap of neural networks to the product of the spectral norms

of the layers [118, 119, 117, 120]. These insights led to multiple implementations of spec-

tral normalization [48, 108, 121, 43, 117, 120], with the implementation of [43] achieving

particular success on GANs. SN can be viewed as a special case of more general techniques

for enhancing the stability of neural network training by controlling the entire spectrum

of a network’s input-output Jacobian [122], weight matrices [117], or learned embeddings

[120].

In practice, spectral normalization [48, 43] is implemented by dividing the weight

matrix wi by its spectral norm: wi

uT
i wivi

, where ui and vi are the left/right singular vectors

of wi corresponding to its largest singular value. As observed by Gouk et al. [108], there

are two approaches in the SN literature for instantiating the matrix wi for convolutional

neural networks (CNNs). In a CNN, since convolution is a linear operation, convolutional

layers can equivalently be written as a multiplication by an expanded weight matrix w̃i

that is derived from the raw weights wi. Hence in principle, spectral normalization should

normalize each convolutional layer by ∥w̃i∥sp [108, 48]. We call this canonical normalization

35

SNConv as it controls the spectral norm of the convolution layer.

However, the spectral normalization that is known to outperform other regularization

techniques and improves training stability for GANs [43], which we call SNw, does not

implement SN in a strict sense. Instead, it uses
∥∥wi

cout×(cinkwkh)
∥∥
sp

; that is, it first reshapes

the convolution kernel wi ∈ Rcoutcinkwkh into a matrix ŵi of shape cout × (cinkwkh), and

then normalizes with the spectral norm ∥ŵi∥sp, where cin is the number of input channels,

cout is the number of output channels, kw is the kernel width, and kh is the kernel height.

Miyato et al. showed that their implementation implicitly penalizes wi from being too

sensitive in one specific direction [43]. However, this does not explain why SNw is more

stable than other Lipschitz regularization techniques, and as observed in [108], it is unclear

how SNw relates to SNConv. Despite this, SNw has empirically been immensely successful in

stabilizing the training of GANs [101, 109, 110, 111, 112, 113, 114]. Even more puzzling, we

show in § 3.3.1 that the canonical approach SNConv has comparatively poor out-of-the-box

performance when training GANs.

Hence, two questions arise: (1) Why is SN so successful at stabilizing the training

of GANs? (2) Why is SNw proposed by [43] so much more effective than the canonical

SNConv?

In this section, we show that both questions are related to two well-known phenom-

ena: vanishing and exploding gradients. These terms describe a problem in which gradients

either grow or shrink rapidly during training [123, 124, 125, 126], and they are known to be

closely related to the instability of GANs [102, 101]. To illustrate that gradient explosion

and vanishing are closely related to the instability in GANs, we trained a WGAN [104]

on the CIFAR10 Dataset with different hyper-parameters leading to stable training, ex-

ploding gradients, and vanishing gradients over 40,000 training iterations. Fig. 3.10 shows

the resulting inception scores for each of these runs, and Fig. 3.11 shows the correspond-

ing magnitudes of the gradients over the course of training. Note that the stable run has

improved sample quality and stable gradients throughout training. This phenomenon has

also been observed in prior literature [102, 101]. We will demonstrate that by controlling

these gradients, SN (and SNw in particular) is able to achieve more stable training and

better sample quality.

36

0 100000 200000 300000 400000
Iterations

2

4

6
In

ce
pt

io
n

sc
or

e Stable
Gradient explosion
Gradient vanishing

Figure 3.10: Inception score over the
course of training. The “gradient vanish-
ing” inception score plateaus as training
is stalled.

0 100000 200000 300000 400000
Iterations

103

105

107

No
rm

 o
f g

ra
di

en
t o

f
D(

re
al

) -
 D

(fa
ke

)

Stable
Gradient explosion
Gradient vanishing

Figure 3.11: Norm of gradient with respect
to parameters during training. The vanish-
ing gradient collapses after 200k iterations.

SN Controls Exploding Gradients

In this section, we show that spectral normalization prevents gradient explosion by bound-

ing the gradients of the discriminator. Moreover, we show that the common choice to nor-

malize all layers equally achieves the tightest upper bound for a restricted class of discrim-

inators. We use η ∈ Rd2 to denote a vector containing all elements in {w1, ..., wL}. In the

following analysis, we assume linear transformations are fully-connected layers lwi(x) = wix

as in [43], though the same analysis can be applied to convolutional layers. Following prior

work on the theoretical analysis of (spectral) normalization [43, 48, 116], we assume no

bias in the network (i.e., Eq. (3.7)) for simplicity.

To highlight the effects of the spectral norm of each layer on the gradient and simplify

the exposition, we will compute gradients with respect to w′
i = wi

uT
i wivi

in the following

discussion. In reality, gradients are computed with respect to wi; we defer this discussion

to Appendix A.2.1, where we show the relevant extension.

How SN controls exploding gradients. The following proposition shows that under

this simplifying assumption, spectral normalization controls the magnitudes of the gradi-

ents of the discriminator with respect to η. Notice that simply controlling the Lipschitz

constant of the discriminator (e.g., as in WGAN [102]) does not imply this property; it

instead ensures small (sub)gradients with respect to the input, x.

Proposition 3.3.1.1 (Upper bound of gradient’s Frobenius norm for spectral normaliza-

tion). If ∥wi∥sp ≤ 1 for all i ∈ [1, L], then we have ∥∇wtDη (x)∥F ≤ ∥x∥
∏L

i=1 ∥ai∥Lip , and
the norm of the overall gradient can be bounded by ∥∇ηDη (x)∥F ≤

√
L ∥x∥∏L

i=1 ∥ai∥Lip .

Note that under the assumption that internal activation functions are ReLU or leaky

37

0 20 40 60 80 100
Iterations

0

10

20

30

40

50

60

No
rm

 o
f g

ra
di

en
t o

f D
(re

al
)

Theoretical upper bound for SN
SN (layer 1)
SN (layer 2)
SN (layer 3)
SN (layer 4)

Without SN (layer 1)
Without SN (layer 2)
Without SN (layer 3)
Without SN (layer 4)

Figure 3.12: Gradient norms of each discriminator layer in MNIST Dataset.

ReLU, if the activation function for the last layer is identity (e.g., for WGAN-GP [104]),

the above bounds can be simplified to ∥∇wtDη (x)∥F ≤ ∥x∥ and ∥∇ηDη (x)∥ ≤
√
L ∥x∥,

and if the activation for the last layer is sigmoid (e.g., for vanilla GAN [1]), the above

bounds become ∥∇wtDη (x)∥F ≤ 0.25 ∥x∥ and ∥∇ηDη (x)∥ ≤ 0.25
√
L ∥x∥.

The bound in Proposition 3.3.1.1 has a significant effect in practice. Fig. 3.12 shows

the norm of the gradient for each layer of a GAN trained on MNIST with and without

spectral normalization. Without spectral normalization, some layers have extremely large

gradients throughout training, which makes the overall gradient large. With spectral nor-

malization, the gradients of all layers are upper bounded as shown in Proposition 3.3.1.1.

Optimal spectral norm allocation. Common implementations of SN advocate setting

the spectral norm of each layer to the same value [43, 48]. However, the following propo-

sition states that we can set the spectral norms of different layers to different constants,

without changing the network’s behavior on the input samples, as long as the product of

the spectral norm bounds is the same.

Proposition 3.3.1.2. For any discriminator Dη = aL ◦ lwL ◦ aL−1 ◦ lwL−1 ◦ . . . ◦ a1 ◦ lw1

and D′
η = aL ◦ lcL·wL ◦ aL−1 ◦ lcL−1·wL−1 ◦ . . . ◦ a1 ◦ lc1·w1 where the internal activation

functions {ai}L−1
i=1 are ReLU or leaky ReLU, and positive constant scalars c1, ..., cL satisfy

that
∏L

i=1 ci = 1, we have

Dη (x) = D′
η(x) ∀x and

∂nDη (x)

∂xn
=

∂nD′
η(x)

∂xn
∀x, ∀n ∈ Z+ .

Given this observation, it is natural to ask if there is any benefit to setting the spectral

norms of each layer equal. It turns out that the answer is yes, under some assumptions

38

10 1 100 101

Inverse ratio of spectral norm

10 1

100

101

Ra
tio

 o
f g

ra
di

en
t n

or
m

y = x
layer 2 / layer1
layer 3 / layer1
layer 4 / layer1

Figure 3.13: Ratio of gradient norm v.s. inverse ratio of spectral norm in MNIST Dataset.

that appear to approximately hold in practice. Let

D ≜

{
Dη = aL ◦ lwL ◦ . . . ◦ a1 ◦ lw1 :

∥∇wiDη (x)∥F∥∥∇wjDη (x)
∥∥
F

=
∥wj∥sp
∥wi∥sp

, ai ∈ {ReLU, leaky ReLU} ∀i, j ∈ [1, L]

}
.

(3.8)

This intuitively describes the set of all discriminators for which scaling up the weight of

one layer proportionally increases the gradient norm of all other layers; the definition of

this set is motivated by our upper bound on the gradient norm (Appendix A.2.2). The

following theorem shows that when optimizing over set D, choosing every layer to have the

same spectral norm gives the smallest possible gradient norm, for a given set of parameters.

Theorem 3.3.1.1. Consider a given set of discriminator parameters η = {w1, ..., wL}.
For a vector c = {c1, . . . , cL}, we denote ηc ≜ {ctwt}Lt=1. Let λη =

∏L
i=1 ∥wi∥1/Lsp denote

the geometric mean of the spectral norms of the weights. Then we have{
λη

∥w1∥sp
, . . . ,

λη

∥wL∥sp

}
= arg min

c: Dηc∈D,
∏L

i=1 ci=1, ci∈R+
∥∇ηcDηc(x)∥F

The key constraint in this theorem is that we optimize only over discriminators in

set D in Eq. (3.8). To show that this constraint is realistic (i.e., SN GAN discriminator

optimization tends to choose models in D), we trained a spectrally-normalized GAN with

four hidden layers on MNIST, computing the ratios of the gradient norms at each layer

and the ratios of the spectral norms, as dictated by Eq. (3.8). We computed these ratios

at different epochs during training, as well as for different randomly-selected rescalings of

the spectral normalization vector c. Each point in Fig. 3.13 represents the results averaged

39

over 64 real samples at a specific epoch of training for a given (random) c. Vertical

series of points are from different epochs of the same run, therefore their ratio of spectral

norms is the same. The fact that most of the points are near the diagonal line suggests

that training naturally favors discriminators that are in or near D. This observation,

combined with Theorem 3.3.1.1, suggests that it is better to force the spectral norms of

every layer to be equal. Hence, existing SN implementations [43, 48] chose the correct,

uniform normalization across layers to upper bound discriminator’s gradients.

Implications on other normalization/regularization techniques: Note that the

analysis in this section can also be used to show the same results for other normaliza-

tion/regularization techniques that control the spectral norm of weights, like weight nor-

malization [107] and orthogonal regularization [106]. However, these techniques do not

necessarily exhibit the more important properties proved in the next section for SN, and

have some known drawbacks (see more discussion in § 3.3.4).

SN Controls Vanishing Gradients

An equally troublesome failure mode of GAN training is vanishing gradients [102]. Prior

work has proposed new objective functions to mitigate this problem [102, 103, 104], but

these approaches are not fully effective (Fig. 3.11). In this section, we show that SN also

helps to control vanishing gradients.

How SN controls vanishing gradients: Gradients tend to vanish for two reasons.

First, gradients vanish when the objective function saturates [127, 102], which is often as-

sociated with function parameters growing too large. Common loss functions (e.g., hinge

loss) and activation functions (e.g., sigmoid, tanh) saturate for inputs of large magnitude.

Large parameters tend to amplify the inputs to the activation functions and/or loss func-

tions, causing saturation. Second, gradients vanish when function parameters (and hence,

internal outputs) grow too small. This is because backpropagated gradients are scaled by

the function parameters (Appendix A.2.2).

These insights motivated the LeCun initialization technique [127]. The key idea is

that to prevent gradients from vanishing, we must ensure that the outputs of each neuron

do not vanish or explode. If the inputs to a neural unit are uncorrelated random variables

with variance 1, then to ensure that the unit’s output also has variance (approximately) 1,

the weight parameters should be zero-mean random variables with variance of 1
ni

, where ni

denote the fan-in (number of incoming connections) of layer i [127]. Hence, LeCun initial-

40

ization prevents gradient vanishing by controlling the variance of the individual parameters.

In the following theorem, we show that SN enforces a similar condition.

Theorem 3.3.1.2 (Parameter variance of SN). For a matrix A ∈ Rm×n with i.i.d. entries

aij from a symmetric distribution with zero mean (e.g., zero-mean Gaussian or uniform),

we have

Var
(

aij
∥A∥sp

)
≤ 1

max{m,n} . (3.9)

Furthermore, if m,n ≥ 2 and max {m,n} ≥ 3, and aij are from a zero-mean Gaussian, we

have

L
max{m,n} log(min{m,n}) ≤ Var

(
aij

∥A∥sp

)
≤ 1

max{m,n} ,

where L is a constant which does not depend on m,n.

Hence, spectral normalization forces zero-mean parameters to have a variance that

scales inversely with max{m,n}. The proof relies on a characterization of extreme val-

ues of random vectors drawn from the surface of a high-dimensional unit ball. Many

fully-connected, feed-forward neural networks have a fixed width across hidden layers, so

max{m,n} corresponds precisely to the fan-in of any neuron in a hidden layer, implying

that SN has an effect like LeCun initialization.

Why SNw works better than SNConv. In a CNN, the interpretation of max{m,n}
depends on how SN is implemented. Recall that the implementation SNw by [43] does

not strictly implement SN, but a variant that normalizes by the spectral norm of ŵi =

wi
cout×(cinkwkh). In architectures like DCGAN [100], the larger dimension of ŵi for hidden

layers tends to be cinkwkh, which is exactly the fan-in. This means that SN gets the right

variance for hidden layers in CNN.

Perhaps surprisingly, we find empirically that the strict implementation SNConv of

[48] does not prevent gradient vanishing. Figs. 3.14 and 3.15 shows the gradients of SNConv

vanishing when trained on CIFAR10, leading to a comparatively poor inception score,

whereas the gradients of SNw remain stable. To understand this phenomenon, recall that

SNConv normalizes by the spectral norm of an expanded matrix w̃i derived from wi. The-

orem 3.3.1.2 does not hold for w̃i since its entries are not i.i.d. (even at initialization);

hence it cannot be used to explain this effect. However, Corollary 1 in [128] shows that

∥ŵi∥sp ≤ ∥w̃i∥sp ≤ α ∥ŵi∥sp, where α is a constant only depends on kernel size, input size,

41

0 100000 200000 300000 400000
Iterations

2

4

6

In
ce

pt
io

n
sc

or
e

SNw (Miyato et al.)
SNConv (Farnia et al.)
SNConv (Farnia et al.) (scale=1.75)

Figure 3.14: Inception score
of different SN variants in
CIFAR10 Dataset.

0 100000 200000 300000 400000
Iterations

100

101

102

No
rm

 o
f g

ra
di

en
t o

f
D(

re
al

)

SNw (Miyato et al.)
SNConv (Farnia et al.)
SNConv (Farnia et al.) (scale=1.75)

Figure 3.15: Gradient norms
of different SN variants in CI-
FAR10 Dataset.

0.5 1.0 1.5 2.0 3.0 4.0
Scale

4

6

In
ce

pt
io

n
sc

or
e

SNConv (Farnia et al.)
SNw (Miyato et al.)

Figure 3.16: Inception score
of scaled SN in CIFAR10
Dataset.

0.5 1.0 1.5 2.0 2.5 3.03.54.0
Scale

10 43

10 39

10 35

10 31

10 27

10 23

10 19

Pr
od

uc
t o

f v
ar

ia
nc

es

SNConv (Farnia et al.)
SNw (Miyato et al.)

Figure 3.17: The parameter variance of scaled SN in CIFAR10 Dataset.

and stride size of the convolution operation. ([129] also deduced a special case of the second

inequality.) This result has two implications:

(1) ∥w̃i∥sp ≤ α ∥ŵi∥sp: Although SNw does not strictly normalize the matrix with

the actual spectral norm of the layer, it does upper bound the spectral norm of the layer.

Therefore, all our analysis in the gradient explosion section still applies for SNw by changing

the spectral norm constant from 1 to α ∥ŵi∥sp. This means that SNw can still prevent

gradient explosion.

(2) ∥ŵi∥sp ≤ ∥w̃i∥sp: This implies that SNConv normalizes by a factor that is at

least as large as SNw. In fact, we observe empirically that ∥w̃i∥sp is strictly larger than

∥ŵi∥sp during training. This means that for the same wi, a discriminator using SNConv will

have smaller outputs than the discriminator using SNw. We hypothesize that the different

scalings explain why SNConv has vanishing gradients but SNw does not.

To confirm this hypothesis, for SNw and SNConv, we propose to multiply all the

normalized weights by a scaling factor s, which is fixed throughout the training. Fig. 3.16

shows that SNConv seems to be a shifted version of SNw. SNConv with s = 1.75 has similar

inception score (Fig. 3.14) to SNw, as well as similar gradients (Fig. 3.15) and parameter

variances (Fig. 3.17) throughout training. This, combined with Theorem 3.3.1.2, suggests

42

0.00

0.01

Layer 1 Layer 2 Layer 3 Layer 4

0 200k 400k
0.00

0.01
Pa

ra
m

et
er

 v
ar

ia
nc

e
Layer 5

0 200k 400k

Layer 6

0 200k 400k
Iterations

Layer 7
Empirical
Theoretical
upper bound

Figure 3.18: Parameter variances throughout training in CIFAR10 Dataset. The blue lines
show the parameter variances of different layers when SN is applied, and the original line
shows our theoretical upper bound given in Eq. (3.9).

that SNw inherently finds the correct scaling for the problem, whereas “proper” spectral

normalization SNConv requires additional hyper-parameter tuning.

SN has good parameter variances throughout training. Our theoretical analysis

only applies at initialization, when the parameters are selected randomly. However, unlike

LeCun initialization which only controls the variance at initialization, we find empirically

that Eq. (3.9) for SN appears to hold throughout training (Fig. 3.18). As a comparison, if

trained without SN, the variance increases and the gradient decreases, which makes sample

quality bad. This explains why in practice GANs trained with SN are stable throughout

training. Formally extending our theoretical analysis to apply throughout training requires

more complicated techniques, which we defer to future work.

3.3.2 Bidirectional Spectral Normalization for Improving Sample Diver-

sity

Given the above theoretical insights, we propose an extension of spectral normalization

called Bidirectional Scaled Spectral Normalization (BSSN). It combines two key ideas:

bidirectional normalization and weight scaling.

Bidirectional Normalization

Glorot and Bengio [130] built on the intuition of LeCun [127] to design an improved ini-

tialization, commonly called Xavier initialization. Their key observation was that to limit

gradient vanishing (and explosion), it is not enough to control only feed-forward outputs;

43

we should also control the variance of backpropagated gradients. Let ni,mi denote the

fan-in and fan-out of layer i. (In fully-connected layers, ni = mi−1 = the width of layer

i.) Whereas LeCun chooses initial parameters with variance 1
ni

, Glorot and Bengio choose

them with variance 2
ni+mi

, a compromise between 1
ni

(to control output variance) and 1
mi

(to control variance of backpropagated gradients).

The first component of BSSN is Bidirectional Spectral Normalization (BSN), which

applies a similar intuition to improve the spectral normalization of Miyato et al. [43].

For fully connected layers, BSN keeps the normalization the same as SNw [43]. For

convolution layers, instead of normalizing by
∥∥wcout×(cinkwkh)

∥∥
sp

, we normalize by σw ≜∥∥∥wcout×(cinkwkh)
∥∥∥
sp
+
∥∥∥wcin×(coutkwkh)

∥∥∥
sp

2 , where
∥∥wcin×(coutkwkh)

∥∥
sp

is the spectral norm of the

reshaped convolution kernel of dimension cin× (coutkwkh). For calculating these two spec-

tral norms, we use the same power iteration method in [43]. The following theorem gives

the theoretical explanation.

Theorem 3.3.2.1 (Parameter variance of BSN). For a convolutional kernel w ∈ Rcoutcinkwkh

with i.i.d. entries wij from a symmetric distribution with zero mean (e.g. zero-mean Gaus-

sian or uniform) where kwkh ≥ max
{

cout
cin

, cin
cout

}
, and σw defined as above, we have

Var

(
wij

σw

)
≤ 2

cinkwkh + coutkwkh
.

Furthermore, if cin, cout ≥ 2 and cinkwkh, coutkwkh ≥ 3, and wij are from a zero-mean

Gaussian distribution, there exists a constant L that does not depend on cin, cout, kw, kh

such that

L

cinkwkh log(cout) + coutkwkh log(cin)
≤ Var

(
wij

σw

)
≤ 2

cinkwkh + coutkwkh
.

In convolution layers, ni = cinkwkh and mi = coutkwkh. Therefore, BSN sets the

variance of parameters to scale as 2
ni+mi

, as dictated by Xavier initialization. Moreover,

BSN naturally inherits the benefits of SN discussed in § 3.3.1 (e.g., controlling variance

throughout training).

44

Weight Scaling

The second component of BSSN is to multiply all the normalized weights by a constant

scaling factor (i.e., as we did in Fig. 3.16). We call the combination of BSN and this

weight scaling Bidirectional Scaled Spectral Normalization (BSSN). Note that scaling can

also be applied independently to SN, which we call Scaled Spectral Normalization (SSN).

The scaling is motivated by the following reasons.

(1) The analysis in LeCun and Xavier initialization assumes that the activation

functions are linear, which is not true in practice. More recently, Kaiming initialization

was proposed to include the effect of non-linear activations [131]. The result is that we

should set the variance of parameters to be 2/(1 + a2) times the ones in LeCun or Xavier

initialization, where a is the negative slope of leaky ReLU. This suggests the importance

of a constant scaling.

10−1 100

Scale

4

6

In
ce

pt
io

n
sc

or
e

LeCun initialization
SN (Miyato et al.)

Figure 3.19: Inception score of SSN and scaled LeCun initialization in CIFAR10, with
mean and standard error of the best score during training across multiple runs.

(2) However, we found that the scaling constants proposed in LeCun/Kaiming initial-

ization do not always perform well for GANs. Even more surprisingly, there are multiple

modes of good scaling. Fig. 3.19 shows the sample quality of LeCun initialization with

different scaling on the discriminator. We see that there are at least two good modes

of scaling: one at around 0.2 and the other at around 1.2. This phenomenon cannot be

explained by the analysis in LeCun/Kaiming initialization.

Recall that SN has similar properties as LeCun initialization (§ 3.3.1). Interestingly,

we see that SSN also has two good modes of scaling (Fig. 3.19). Although the best scaling

constants for LeCun initialization and SN are very different, there indeed exists an inter-

esting mode correspondence in terms of parameter variances. We hypothesize that the

shift of good scaling from Kaiming initialization we see here could result from adversarial

training, and defer the theoretical analysis to future work. These results highlight the need

45

CIFAR10 Dataset STL10 Dataset CelebA Dataset ILSVRC2012 Dataset

IS ↑ FID ↓ IS ↑ FID ↓ FID ↓ IS ↑ FID ↓
Real data 11.26 9.70 26.70 10.17 4.44 197.37 15.62

SN 7.12 ± 0.07 31.43 ± 0.90 9.05 ± 0.05 44.35 ± 0.54 9.43 ± 0.09 12.84 ± 0.33 75.06 ± 2.38

SSN 7.38 ± 0.06 29.31 ± 0.23 9.28 ± 0.03 43.52 ± 0.26 8.50 ± 0.20 12.84 ± 0.33 73.21 ± 1.92
BSN 7.54 ± 0.04 26.94 ± 0.58 9.25 ± 0.01 42.98 ± 0.54 9.05 ± 0.13 1.77 ± 0.13 265.20 ± 19.01
BSSN 7.54 ± 0.04 26.94 ± 0.58 9.25 ± 0.01 42.90 ± 0.17 9.05 ± 0.13 13.23 ± 0.16 69.04 ± 1.46

Table 3.3: Inception score (IS) and FID on CIFAR10 Dataset, STL10 Dataset, CelebA
Dataset, and ILSVRC2012 Dataset. The last three rows are proposed in this work, with
BSSN representing our final proposal—a combination of BSN and SSN. Each experiment
is conducted with 5 random seeds except that the last three rows on ILSVRC2012 Dataset
is conducted with 3 random seeds. Mean and standard error across these random seeds
are reported. We follow the common practice of excluding IS in CelebA Dataset as the
inception network is pretrained on ImageNet, which is different from CelebA. Bold font
marks best numbers in a column.

for a separate scaling factor.

(3) The bounds in Theorem 3.3.1.2 and Theorem 3.3.2.1 only imply that in SN and

BSN the order of parameter variance w.r.t. the network size is correct, but constant scaling

is unknown.

3.3.3 Experiments

In this section we verify the effectiveness of BSSN with extensive experiments. The code

for reproducing the results is at https://github.com/fjxmlzn/BSN.

[43] already compares SN with many other regularization techniques like WGAN-GP

[104], batch normalization [132], layer normalization [133], weight normalization [107], and

orthogonal regularization [106], and SN is shown to outperform them all. Therefore, we

compare BSSN with SN. To isolate the effects of the two components proposed in BSSN,

we also compare against bidirectional normalization without scaling (BSN) and scaling

without bidirectional normalization (SSN).

We conduct experiments across different public (non-sensitive) datasets (from low-

resolution to high-resolution) and network architectures (from standard CNN to ResNets).

More specifically, we conducts experiments on CIFAR10 Dataset, STL10 Dataset, CelebA

Dataset, and ImageNet Dataest (ILSVRC2012 Dataset), following the same settings in

[43]. The results are in Table 3.3.

46

https://github.com/fjxmlzn/BSN

0 100000 200000 300000 400000
Iterations

4.5

5.0

5.5

6.0

6.5

7.0

7.5

In
ce

pt
io

n
sc

or
e

SN
BSN

Figure 3.20: Inception score in CIFAR10 Dataset. The results are averaged over 5 random
seeds, with αg = 0.0001, αd = 0.0001, ndis = 1.

BSN v.s. SN (showing the effect of bidirectional normalization § 3.3.2): (1)

By comparing BSN with SN in Table 3.3, we can see that BSN outperforms SN by a

large margin in all metrics except in ILSVRC2012 Dataset (discussed later). (2) More

importantly, the superiority of BSN is stable across hyper-parameters. We also vary the

learning rates (αg, αd) and momentum parameters of generator and discriminator, and the

number of discriminator updates per generator update (ndis). We see that BSN consistently

outperforms SN in most of the cases. (3) Moreover, BSN is more stable in the entire training

process. We see that as training proceeds, the sample quality of SN often drops, whereas

the sample quality of BSN appears to monotonically increase (Fig. 3.20). BSN generally

outperforms SN in final sample quality (i.e., at the end of training), but also in peak sample

quality. I.e., BSN stabilizes the training process, which is the purpose of SN (and BSN).

SSN v.s. SN (showing the effect of scaling § 3.3.2): Comparing SSN with SN in

Table 3.3, we see that scaling consistently improves (or has the same metric) in all cases.

This verifies our intuition in § 3.3.2 that the inherent scaling in SN is not optimal, and an

extra constant scaling is needed for best results.

BSSN v.s. BSN (showing the effect of scaling § 3.3.2): By comparing BSSN with

BSN in Table 3.3, we see that in some cases the optimal scale of BSN happens to be 1 (e.g.,

in CIFAR10 Dataset), but in other cases, scaling is critical. For example, in ILSVRC2012

Dataset, BSN without any scaling has the same gradient vanishing problem we observe

for SNConv [48] in § 3.3.1, which causes bad sample quality. BSSN successfully solves the

gradient vanishing problem and achieves the best sample quality.

Summary: In summary, both designs we proposed can effectively stabilize training and

achieve better sample quality. Combining them together, BSSN achieves the best sample

47

quality in most cases. This demonstrates the practical value of the theoretical insights in

§ 3.3.1.

3.3.4 Discussions

In this section, we theoretically analyze why spectral normalization is able to stabilize

GANs, and propose a simple replacement of SN named BSSN to further boost the training

stability and sample fidelity.

Other reasons contributing to the stability of SN. This section presents one possible

reason (i.e., SN avoids exploding and vanishing gradients), and shows such a correlation

through theoretical and empirical analysis. However, there could exist many other parallel

factors. For example, [43] points out that SN could speed up training by encouraging the

weights to be updated along directions orthogonal to itself. Our results do not shed light

on these orthogonal hypotheses.

Implications on other normalization/regularization techniques. As discussed in

§ 3.3.1, other normalization techniques like weight normalization [107] and orthogonal reg-

ularization [106] also control the maximum gradient norm, shown by a simple extension of

our results. However, they perform worse in practice [43]. We hypothesize two reasons: (1)

They may not have the more important properties proved in gradient vanish § 3.3.1. For ex-

ample, the official implementation of orthogonal regularization on CNN kernels [134] gives

a parameter variance of 1
cinkw

, which is larger than the one in SNw; (2) They have known

drawbacks like promoting less effective features [43]. Extending our analysis framework to

explain these differences would be an interesting future work.

Future directions. Our results suggest that SN stabilizes GANs by controlling exploding

and vanishing gradients in the discriminator. However, our analysis also applies to the

training of any feed-forward neural network. This may explain why SN also helps train

generators [110, 101] and neural networks more broadly [48, 108, 121]. We focus on GANs

because SN seems to disproportionately benefit them [43]. Carefully understanding why is

an interesting direction for future work.

Related to the weight initialization and training dynamics, recent work [135, 136]

has shown that Gaussian weights or ReLU activations cannot achieve dynamical isometry

(all singular values of the network Jacobian near 1), a desired property for training stabil-

ity. Orthogonal weight initialization may be better at achieving the goal. We considered

Gaussian weights and ReLU activations as they are the predominant implementations in

48

GANs, but studying other networks may be useful too.

3.4 Chapter Summary

In this chapter, we study the two biggest fidelity issues in GANs: mode collapse and train-

ing instability. Regarding mode collapse, we propose a theoretical framework for analyzing

the issue by drawing connections to hypothesis testing. Based on the theoretical insights,

we propose PacGAN, a simple and effective framework for alleviating mode collapse. Re-

garding training instability, we provide a theoretical analysis of why spectral normalization

[43], a widely used heuristic is so successful in stabilizing training. Based on the theoretical

insights, we propose Bidirectional Scaled Spectral Normalization (BSSN), a simple weight

normalization technique to further improve training stability and sample fidelity.

Broader impacts. As fundamental improvements to GANs, the two algorithms proposed

in this chapter (PacGAN and BSSN) are not only useful in data sharing applications, but

are also generally applicable in all other GAN applications for boosting the sample fidelity.

The theoretical insights (e.g., the effect of spectral normalization § 3.3.1) could be useful

for other neural networks, too.

49

Chapter 4

Privacy Foundations

In this chapter, we first provide an overview of the fundamental privacy issues of

GANs and introduce the privacy definitions and metrics (§ 4.1). We then present our

theoretical analysis and algorithmic solutions for two important privacy notations: sample-

level privacy (§ 4.2) and distributional privacy (§ 4.3). We conclude this chapter in § 4.4.

4.1 Overview of the Privacy Challenges

Since GANs are a relatively new class of models, the privacy properties of GANs have not

been extensively studied, and how to make GANs more privacy-preserving is still an open

question. In this section, we review the two most important privacy notations: sample-level

privacy and distributional privacy.

Sample-level privacy. Sample privacy is a concern not only for GANs, but for all

algorithms that interact with data. To provide a simplified mental model, imagine a table

where each row corresponds to a single sample (e.g., a patient’s medical information), and

each column corresponds to a feature (e.g., gender, disease). Sample-level privacy describes

how well the output of an algorithm (in the case of GANs, synthetic data) protects the

information about individual samples (rows). In other words, if an attacker can infer

information about a single sample in the original data by observing the output of the

algorithm, then the algorithm has poor sample-level privacy. To evaluate sample-level

privacy, there are two main approaches, which we discuss next.

• Differential privacy. Differential privacy (DP) has become the de facto formal privacy

definition for sample-level privacy in many applications [137, 3]. We say that two

databases D0 and D1 are neighboring if they differ in at most one element (row). A

mechanism M is (ϵ, δ)-differentially-private [137, 3] if for any neighboring database

D0 and D1, and any set S ⊆ range (M),

P [M(D0) ∈ S] ≤ eϵP [M(D1) ∈ S] + δ.

50

Another stronger notion of differential privacy is called probabilistic differential pri-

vacy. A mechanism M is (ϵ, δ)-probabilistically-differentially-private [138] if for any

neighboring database D0 and D1, there exists sets S0 ⊆ range (M) where P [M(D0) ⊆ S0] ≤
δ, such that for any set S ⊆ range (M)

P [M(D0) ∈ S \ S0] ≤ eϵP [M(D1) ∈ S \ S0] .

This says that (ϵ, 0)-differential-privacy condition holds except over a region of the

support with probability mass at most δ.

It is straightforward to show that (ϵ, δ)-probabilistically-differential-privacy im-

plies (ϵ, δ)-differential-privacy. In fact, probabilistic differential privacy is strictly

stronger than differential privacy. To see this, consider the following example: as-

sume Pp,Pq are the distribution function of M(D0) and M(D1) respectively. When

eϵ(1 − δ) < 1 and δ > 0, let ϵ′ = min {1− eϵ(1− δ), δ}, we can construct the follow-

ing Pp,Pq: Pq (0) = 0,Pp (0) = 1 − (1 − ϵ′)e−ϵ and Pq (1) = 1,Pp (1) = (1 − ϵ′)e−ϵ.

Then M satisfies (ϵ, δ)-differential-privacy, but does not satisfy (ϵ, γ)-probabilistically-

differential-privacy for any γ < 1.

• Membership inference attacks. Membership inference attacks are closely related to

differential privacy. Given a trained model, a membership inference attack aims to

infer whether a given sample x was in the training dataset or not. The main difference

between membership inference and differential privacy is that the attacker in differ-

ential privacy is assumed to know an adversarially-chosen pair of candidate training

databases, whereas in membership inference attacks, the adversary is typically given

access only to test samples (of which some are training samples) and the model. In

some cases, the attacker is also given side information about the number of training

samples in the test set. Hence, in general, the attacker in membership inference is

neither strictly weaker nor strictly stronger than the differential privacy attacker.

There have been many membership inference attacks proposed for discriminative

models [139, 140, 141, 142, 143, 144, 145] and generative models (including GANs)

[146, 147, 148]. Therefore, understanding robustness of GANs to membership inference

attacks is important.

With the above setup in mind, we seek to answer the following questions: (1) What are the

sample-level privacy guarantees of GANs? (2) If these guarantees are not sufficient, how

can we make GANs more privacy-preserving with respect to sample-level information?

51

Distributional privacy. Distributional privacy is another important privacy concern,

particularly in data sharing scenarios. It refers to the issue that the distributional properties

of shared data may leak sensitive information (e.g., the mean of a data column). For

example, a video content provider that shares video session data may wish to hide the

total or mean traffic volume, which could be used to infer the company’s total revenue

[57]. A cloud provider that shares cluster performance traces may not want to reveal the

proportions of different server types that it owns, which are regarded as business secrets

[12]. At the same time, the cloud provider may also not want to release the system usage

information faithfully, as maximum value of memory usage, for example, is close to the

memory size of the system, which can be used by adversaries to launch attacks (e.g., denial-

of-service attacks). Note that this information (total/mean traffic volume, proportions of

server types, maximum or quantiles of system usage) cannot be inferred from any single

record, but is inherent to the overall data distribution (or the aggregate dataset). This

means that distributional privacy is orthogonal to sample-level privacy. For example, a

video content provider has a dataset of daily page views that they want to release, and

they are concerned about the mean page views (as it implies the revenue). A typical DP

algorithm for protecting sample-level privacy [149] would add Gaussian or Laplace noise

to the page view values. This process does not change the mean of the entire data on

expectation. In fact, DP techniques are not designed to protect distributional attributes

at all (they are designed to preserve them).

Unlike sample-level privacy, which has well-established frameworks for quantification

and evaluation (e.g., differential privacy, membership inference attacks), distributional pri-

vacy is less studied in the community. Therefore, we want to explore: (1) Can we develop

a privacy framework for analyzing, evaluating, and protecting distributional privacy con-

cerns? (2) Can we make GANs more privacy-preserving regarding distributional informa-

tion?

4.2 Protecting Sample-Level Privacy

In this section, we first show that GANs have inherent sample-level privacy guarantees,

but these guarantees are not strong enough to provide meaningful protection (§ 4.2.1).

This motivates us to use DP-SGD, a general training method for making neural networks

differentially private. However, we observe that DP-SGD sacrifices data fidelity too much

(§ 4.2.2). To address this challenge, we propose pretraining GANs on public data and

52

then fine-tuning them on private data using DP-SGD. We show that this method has the

potential to achieve better tradeoff between fidelity and privacy (§ 4.2.3). Finally, we

summarize our contributions and discuss future work (§ 4.2.4).

4.2.1 GANs’ Inherent Privacy Guarantees

In this section, we will analyze the sample-level privacy guarantees of GANs when trained

without any special mechanisms in place. We will examine both sample-level privacy

notations discussed in § 4.1: differential privacy and robustness to membership inference

attacks.

Differential Privacy Guarantees

We start with some notation, definitions, and assumptions. For a probability measure µ

on X , we let ρµ denote its density function. We use G and D to denote the set of possible

generators and discriminators, respectively, where D is a set of functions X → R. Our

results rely on three assumptions:

(A1) Our generator set G and discriminator set D satisfy ∀ν1, ν2 ∈ G, log (ρν1/ρν2) ∈ spanD,

where spanD is defined as the set of linear combinations of the functions:

spanD ≜

{
w0 +

n∑
i=1

wifi : wi ∈ R, fi ∈ D, n ∈ N

}
.

(A2) Our discriminator set D is even, i.e, ∀f ∈ D, −f ∈ D, and assume that ∀f ∈ D, ∀x ∈
X ,

∥f(x)∥∞ ≤ ∆,

where ∥f∥∞ ≜ supx∈X |f(x)|.

(A3) The discriminator set D =
{
fη : η ∈ H ⊆ [−1, 1]d2

}
and

∥∥fη − fη′
∥∥
∞ ≤ L

∥∥η − η′
∥∥
2
.

According to Lemma 4.1 in [150], when generators in G are invertible neural networks

(e.g., in [151, 152]) with l layers, then the discriminator set D of neural networks with l+2

53

layers satisfy (A1). Assumption (A2) is easily satisfied by neural networks with an acti-

vation function on the output layer that bounds the output (e.g., sigmoid). (A3) assumes

the discriminator is Lipschitz in its (bounded) parameters; several recent works attempt

to make network layers Lipschitz in inputs through various forms of regularization (e.g.,

spectral normalization [43, 153]), which makes the network Lipschitz also in parameters

[153].

Given µ, ν, two probability measures on X , and set D of functions X → R, the

integral probability metric [154] is defined as:

dD (µ∥ν) ≜ sup
f∈D
{Ex∼µ [f(x)]− Ex∼ν [f(x)]} .

Given function set D, the D-variation norm of function g is defined as

∥g∥D,1 ≜ inf

{ n∑
i=1

|wi| : g = w0 +
n∑

i=1

wifi,∀n ∈ N, wi ∈ R, fi ∈ D
}
,

which intuitively describes the complexity of linearly representing g using functions in D
[155]. We define

ΓD,G ≜ sup
ν1,ν2∈G

∥log (ρν1/ρν2)∥D,1 , (4.1)

which intuitively bounds the complexity of representing differences in log densities of pairs

of generators in G using functions in D.

We consider the GAN training and sampling mechanism in Algorithm 4.2.1, which

adds a sampling processing before the normal GAN training. Note that the sampling

process in Algorithm 4.2.1 is commonly used in existing GAN implementations [1], which

typically sample i.i.d. from D in each training batch. We have moved this sampling process

to the beginning of training in Algorithm 4.2.1 for ease of analysis.

Finally, we define the quantity

τF ,G (k, ξ, µ) ≜ 2

(
inf
ν∈G

dD (µ∥ν) + τopt +
Cξ√
k

)
, (4.2)

54

Algorithm 4.2.1: Differentially-private GAN mechanism.

Input : Doriginal: A training dataset containing m samples.
k: Number of sampled training samples used in training.
n: Number of generated samples.

Output: Dgenerated: n generated samples.

1 Dtrain ← k i.i.d. samples from Doriginal ;
2 qθ ← Trained GAN using Dtrain;
3 Dgenerated ← n generated samples from the trained qθ;

where

Cξ = 16
√

2πd2L + 2∆
√

2 log(1/ξ), (4.3)

d2 and L are the constants defined in (A3), ∆ is the constant defined in (A2), τopt is an

upper bound on the optimization error, i.e.,

dD (p̂Xk∥qθ)− inf
ν∈G

dD (p̂Xk∥ν) ≤ τopt,

pX is the real distribution, p̂Xk be the empirical distribution of pX on k i.i.d training

samples, qθ is the trained generator from the optimization algorithm. The interpretation

of τF ,G (k, ξ, pX) is described in greater detail in Appendix B.1.1, but intuitively, it will be

used to bound a GAN’s generalization error arising from approximation, optimization, and

sampling of the training datasets in Line 1. To reduce notation, we will henceforth write

this quantity as τk,ξ.

Our main result states that a GAN trained on m samples and used to generate n

samples satisfies a
(
ϵ, O(n/m)

ϵ(1−e−ϵ)

)
-differential-privacy guarantee; moreover, this bound is tight

when n = 1 and for small ϵ.

Theorem 4.2.1.1 (Achievability). Consider a GAN trained on m i.i.d. samples from

distribution pX . The mechanism in Algorithm 4.2.1 under assumptions (A1)-(A3) satisfies

(ϵ, δ)-differential privacy for any ϵ > 0, ξ > 0, and

δ >
n ΓD,G

ϵ(1− e−ϵ)

(
2∆

m
+ τk,ξ

)
+ 2ξ . (4.4)

We assume that the terms regarding ξ (2ξ and τk,ξ) can be made negligible: for any

55

ξ > 0,
Cξ√
k

can be arbitrarily small as we get more samples from the sampling phase in

Line 1, and we assume negligible approximation error and optimization error. Hence, the

dominating term in Eq. (4.4) scales as O(n/m); here we are ignoring the dependency on

ϵ. Next, we show that for a special case where n = 1 and ϵ scales as O
(
1
m

)
, this bound is

tight in an order sense (again ignoring dependencies on ϵ).

Proposition 4.2.1.1 (Converse for n = 1). Under the assumptions of Theorem 4.2.1.1,

let

∆′ = sup
f∈D

sup
x,y∈X

|f(x)− f(y)|.

Then with probability at least 1−2ξ, the GAN mechanism in Algorithm 4.2.1 for generating

1 sample (i.e., n = 1) does not satisfy (ϵ, δ)-differential-privacy for any

δ <
(eϵ + 1)

2∆

(
∆′

2m
− τk,ξ

)
+ 1− eϵ. (4.5)

This bound in Eq. (4.5) is non-vacuous (nonnegative) when ϵ < 1
∆

(
∆′

2m − τk,ξ

)
and

m < ∆′/2τk,ξ. Again assuming τk,ξ ≈ 0 (i.e., ignoring the approximation error and optimiza-

tion error and taking
Cξ√
k
→ 0), the latter condition holds trivially. Hence when ϵ scales as

O
(
1
m

)
, it is not possible to achieve an (ϵ, δ)-probabilistic differential privacy guarantee for

δ = o
(
1
m

)
.

Discussions. These results suggest that GAN-generated samples satisfy an inherent

differential privacy guarantee, so the influence of any single training sample on the final

generated samples is bounded. However, the rate O(n/m) is weak. For comparison, the

mechanism that releases n samples uniformly at random from a set of m training samples

satisfies (0, n/m)-differential privacy, which is of the same rate. Therefore, (ϵ, δ)-differential

privacy usually requires δ ≪ 1
poly(m) to be meaningful. To satisfy this condition, we would

need ϵ to grow as a function of m (since δ in our results is a function of ϵ), which is not

practically viable. This suggests the need for incorporating additional techniques (e.g.,

DP-SGD) to achieve stronger differential privacy guarantees in practice. This is what we

will explore in the next sections.

Robustness to Membership Inference Attacks

In this section, we first derive a general bound on the error of membership inference attacks

for generative models. Then, we utilize generalization bounds for GANs to obtain specific

56

bounds for GANs.

We focus on the black-box attack setting [139, 147, 146], in which the attacker can

sample from the generated distribution qθ, but does not have access to the generator

parameters θ. To upper bound the attack performance, we assume that attacker has

unlimited resources and can access the trained generator infinite times, so that it can

accurately get the generated distribution qθ.

Our analysis departs from prior analysis of membership inference in discriminative

models [139] in two key respects:

• [139] assume that the attacker has access to a dataset U = {u1, . . . , up}, which contains

all the training samples (i.e., Doriginal ⊆ U) and some other test samples drawn from

the ground-truth distribution pX (so p > m). It also assumes that the attacker

knows the number of training samples m. We argue that this assumption is too

strong, especially in the case of generative models, where training samples are typically

proprietary. Therefore, we assume that the attacker makes guesses purely based on a

single test sample x ∈ X , without access to such a dataset. The test sample is either

drawn from the ground-truth distribution (i.e., x ∼ pX), or from the training dataset

(i.e., x
i.i.d.←− Doriginal).

• The analysis in [139] focuses on the quantity P (u ∈ Doriginal|θ) for a particular u. This

is useful for finding an attack policy, but is not conducive to characterizing the error

statistics. Instead, we want to be able to bound the shape of ROC curve. That is, we

want to upper bound the true positive rate an attacker can achieve given any desired

false positive rate. We show that this problem can be reduced to a clean hypothesis

testing problem, whose errors are closely tied to the generalization errors of GANs.

Following prior work on the theoretical analysis of membership inference attacks

[139], we assume that the distribution of the generator parameters is

P (θ|x1, ..., xm) ∝ e−
∑m

i=1 ℓ(θ,xi) (4.6)

(setting T = 1 in [139]), where x1, ..., xm ∼ pX are i.i.d training samples drawn from the

ground-truth distribution pX , and ℓ(θ, x) denotes the loss on sample x and parameter θ. As

we are focusing on generative models here, we assume that the loss is Kullback-Leibler (KL)

divergence, i.e., ℓ (θ, x) = log (ρpX (xi)/ρqθ (xi)), where ρqθ denotes the density of the generator

with parameters θ. Note that many generative models are explicitly or implicitly minimiz-

ing this KL divergence, including some variants of GANs (more specifically, f-GANs with

57

a specific loss [156]), Variational Autoencoder (VAE) [71], PixelCNN/PixelRNN [157], and

many other methods that are based on maximum likelihood [158]. We use KL divergence

also because this simplifies the analysis and highlights key theoretical insights. With this

assumption, the parameter distribution becomes

P (θ|x1, ..., xm) ∝
m∏
i=1

ρqθ (xi)

ρpX (xi)
.

Let ρθtrain denotes the density posterior distribution of the training samples given

parameter θ. The following proposition shows that this distribution takes a simple form.

Proposition 4.2.1.2 (Posterior distribution of training samples). The posterior distribu-

tion of training samples is equal to the generated distribution, i.e., ρθtrain = ρqθ .

This proposition validates prior membership inference attacks that utilize approxi-

mations of ρqθ (x) to make decisions [147, 146, 148].

With this proposition, the problem becomes clear: for a given sample x, the attacker

needs to decide whether the sample comes from the training set (i.e., from qθ) or not (i.e.,

from pX). In the following theorem, we outer bound the ROC region for this hypothesis

test, which relates the true positive (TP) rate to the false positive (FP) rate.

Proposition 4.2.1.3. Consider a generative model qθ and a real distribution pX . Define

r ≜ dTV (qθ∥pX) as the total variation (TV) distance between the two distributions. Define

function f : [0, 1]→ [0, 1] as

f(x) =

{
x + r (0 ≤ x ≤ 1− r)

1 (r < x ≤ 1)
,

Then we have that for any membership inference attack policy A, the ROC curve gA :

[0, 1]→ [0, 1] (mapping FP to TP) satisfies g(x) ≤ f(x), ∀ 0 ≤ x ≤ 1, i.e., the ROC curve

is upper bounded by f . Also, this bound is tight, i.e., there exists two distributions p′X , g′

such that dTV (p′X∥g′) = r and the ROC curve is exactly f at every point.

As a result, we can directly bound the area under the ROC curve (AUC) as a function

of the total variation distance.

58

Corollary 4.2.1.1 (Bound on the AUC for generative models). For any attack policy on

a generative model, we have

AUC ≤ −1

2
dTV (qθ∥pX)2 + dTV (qθ∥pX) +

1

2
.

Note that Proposition 4.2.1.3 and Corollary 4.2.1.1 hold for any generative model.

For GANs in particular, we can use generalization bounds in Lemma B.1.1.1 to obtain the

following result.

Theorem 4.2.1.2. Consider a GAN model qθ and a real distribution pX . Define

ΞF ,G,pX ≜ sup
ν∈G
∥log (ρpX/ρν)∥D,1

and

ϵTV (m, δ) ≜

√
ΞF ,G,pX · τm,δ

2
√

2
, (4.7)

where τm,δ is defined as in Eq. (4.2). Define function f : [0, 1]→ [0, 1] as

f(x) =

{
x + ϵTV (m, δ) (0 ≤ x ≤ 1− ϵTV (m, δ))

1 (ϵTV (m, δ) < x ≤ 1)
.

Then we have that for any membership inference attack policy A, the ROC curve gA :

[0, 1]→ [0, 1] satisfies g(x) ≤ f(x), ∀ 0 ≤ x ≤ 1, and the bound is tight.

One complication is that existing generalization bounds do not directly bound TV

distance, so these must be extended. It directly gives the following corollary bounding the

AUC for GANs.

Corollary 4.2.1.2 (Bound on AUC for GANs). For any attack policy on GANs, we have

that with probability at least 1− δ w.r.t. the randomness of training samples,

AUC ≤ −1

2
ϵTV (m, δ)2 + ϵTV (m, δ) +

1

2
,

where ϵTV (m, δ) is defined as in Eq. (4.7).

Note that the AUC bound decays as O(m−1/4).

59

Discussions. These results confirm the prior empirical observation that GANs are

more robust to membership inference attacks when the number of training samples grows

[12, 147]. However, the results heavily rely on the assumption of generator parameter dis-

tribution Eq. (4.6), which was introduced in [139]. It is unlikely to strictly hold in practice.

Extending the results to more general settings would be an interesting future direction.

4.2.2 Challenge: DG-SGDGives Bad Fidelity-Privacy Tradeoff on GANs

The above section shows that the inherent privacy guarantees of GANs are not sufficient

to provide reasonable guarantees. Therefore, we need to apply additional mechanisms to

ensure sample-level privacy. One common way to make neural network models differentially

private is to replace the optimizer with DP-SGD algorithm []. On the high-level, DP-SGD

algorithm computes per-sample gradients, clip them, and add Gaussian noise to their sum.

Theoretically, this process would make sure that the trained GAN model and also its

generated samples are differentially private.

Figure 4.1: Autocorrelation for real, ϵ = + inf, and DP-GANs with different values of ϵ).

However, empirically we observe that DG-SGD algorithm hurts fidelity too much.

We conduct experiments on training GANs on Wikipedia Web Traffic Dataset (WWT)

[160], which contains the daily page views of 145,063 Wikipedia web pages in 2015-2016.

The blue line in Fig. 4.1 shows the average autocorrelation of all samples in the original

data. We see that the original data has weekly and annual correlations. The red line

shows the results of GANs without DP-SGD. We can see that GANs can capture both

patterns well. The purple lines are from GANs trained with DP-SGD with different DP

privacy budget, ϵ. Smaller values of ϵ denote more privacy; ϵ ≈ 1 is typically considered

a reasonable operating point. We can see that GANs with DP-SGD only work well with

very large epsilon values (less private). As ϵ is reduced (stronger privacy guarantees),

60

autocorrelations become progressively worse. When epsilon is around 1, the GANs are not

able to capture the patterns well. One reason for the bad results could be that the GANs

are already hard to train (§ 3.3). The added gradient noise from DP-SGD could make the

training process more unstable, leading to poor generated samples.

4.2.3 Public Pretraining for Improving Fidelity-Privacy Tradeoff

Observing that public datasets often contain similar patterns as private data, we propose a

two-step approach for training GANs on private data. First, we pretrain GANs on public

data without using DP-SGD. This allows GANs to learn the common patterns present in

both public and private data. Next, we fine tune GANs on private data with DP-SGD.

Because GANs have already learned relevant patterns from the public data, they should

require fewer DP-SGD iterations to research the desired fidelity level. This can improve

fidelity-privacy tradeoff, as the privacy cost (ϵ) increases with the number of DP-SGD

iterations.

To verify the idea, we conduct the experiments on (1) CAIDA datasets [7] which

contain anonymized traces from high-speed monitors on a commercial backbone link, and

(2) Data Center dataset, which is a packet capture from the “UNI1” data center studied in

the IMC 2010 paper [161]. Privacy is measured by DP parameter ϵ (we fix δ = 10−5), and

fidelity is measured as the mean JSD across all fields in the data (smaller is better). Figure

4.2 shows the results. We see that public pretraining do help the fidelity-privacy tradeoff,

but this gain only holds when the public dataset is similar to the private data. When the

model is pretrained on a public header trace from a different domain, the privacy-fidelity

tradeoff is the same as training from scratch. For example, the ‘DP Pretrained-SAME’

curve was pretrained on a CAIDA dataset from the Chicago collector in March 2015,

and finetuned on “private” CAIDA dataset (New York). Although these datasets likely

see different traffic patterns, they are from the same domain, and we observe gains in

privacy-fidelity tradeoff. In contrast, the ‘DP Pretrained-DIFF’ curve was pretrained on

the Data Center dataset, and pretraining gives virtually no benefit. This suggests that

pretraining can be effective, but care must be taken to select sufficiently close pretraining

public datasets.

Note that this idea of public pretraining has been explored in related work from the

DP community [162, 163, 164, 165], but it has not been utilized in GANs to the best of

our knowledge.

61

101 103 105 107 109

Epsilon

0.18
0.20
0.22
0.24
0.26
0.28
0.30
0.32

Av
g.

 JS
 d

iv
er

ge
nc

e Naive DP
DP Pretrained-SAME
DP Pretrained-DIFF

Figure 4.2: Privacy-fidelity tradeoffs: Privacy is measured with (ϵ, δ) in DP (↓) and fidelity
is measured as average JSD across metrics (↓).

4.2.4 Discussions

In this section, we provide the theoretical analysis of the sample-level privacy guarantees

of GANs, and show that pretraining GANs on public data is a promising approach for

improving fidelity-privacy tradeoff.

Limitations and future work. (1) Our theoretical analysis (§ 4.2.1) builds on existing

generalization bounds for GANs [155]. Therefore, we inherit their assumptions (e.g., on the

classes of generators and discriminators). Some of these assumptions do not apply to all

GAN architectures. Extending the results to more general settings would be an interesting

direction, potentially with stronger generalization bounds. (2) As discussed in § 4.2.1, the

results on membership inference attacks rely on an assumption from [139] regarding the

generator parameter distribution; this assumption is unlikely to hold in practice. Relaxing

this assumption is an interesting direction for future work. (3) The bounds we give for both

privacy notions depend on unknown constants like optimization and approximation errors.

Numerically quantifying these bounds in practice remains a challenging and interesting

direction. (4) This dissertation focuses on GANs. Similar techniques in our theoretical

analysis (§ 4.2.1) could be used to analyze other types of generative models. This could be

an interesting direction for future work.

62

4.3 Protecting Distributional Privacy

In this section, we first present a theoretical framework for analyzing distribution privacy

(§ 4.3.1). At a high level, the proposed framework works as follows. A data holder first

chooses one or more secrets, which are mathematically defined as functions of the data

holder’s data distribution. For example, a video analytics company might choose the mean

daily observed traffic as a secret quantity. Then, the data holder obfuscates their data

according to some mechanism and releases the output. Our framework quantifies the

privacy of this mechanism by analyzing the probability that an attacker can infer the data

holder’s true secret after observing the output. To capture the utility of released data, we

define the distortion of a mechanism as the worst-case distance (where the distance metric

can be chosen by the data holder or data user) between the original and released data

distributions. Our goal is to design data release mechanisms that control tradeoffs between

privacy and distortion. Based on this framework, we present a theoretical analysis of the

achievable privacy-distortion tradeoffs (§ 4.3.2) and a template of data release mechanisms

(§ 4.3.3). We then apply these results to several concrete examples of secrets (§ 4.3.4), and

present experimental results on real-world datasets (§ 4.3.5). Finally, we summarize the

contributions and discuss future work (§ 4.3.6).

4.3.1 Theoretical Framework for Distributional Privacy

Notation. Random variables are denoted with uppercase English letters or upright Greek

letters (e.g., X, μ), and their realizations are denoted with italicized lowercase letters (e.g.,

x, µ). For a random variable X, we denote its probability density function (PDF), or, in

the case of discrete random variables, its probability mass function (PMF), as fX , and its

distribution measure as pX . If a random variable X is drawn from a parametric family

(e.g., X is Gaussian with specified mean and covariance); the parameters are denoted

with a subscript of X, i.e., the above notations become Xθ, fXθ
, pXθ

respectively for

parameters θ ∈ Rq, where q ≥ 1 denotes the dimension of the parameters. In addition,

the conditional PDF/PMF of X given another random variable Y is denoted as fX|Y . We

use Z,Z>0,N,R,R>0, to denote the set of integers, positive integers, natural numbers, real

numbers, and positive real numbers respectively.

Fig. 4.3 shows the framework, which we will explain below.

Original data. Consider a data holder who possesses a dataset of n samples X =

63

Gender Salary …

User 1

User 2

…

Data
holder

Original data

Distribution:

secret ≜ "()

Distributional Privacy
Toolbox

Data release
mechanism

…

select

Data release
mechanism

Gender Salary …

User 1

User 2

…

Released data

Data
user

Prevent attackers from
guessing the secret

Released data
has good utility

Attacker

Guess the
secret

Conventional approaches
(e.g., differential privacy)
focus on protecting "row
level" properties, not
distributional properties

Figure 4.3: Problem overview. The data holder produces released data and wants to
hide distributional secrets of the original data. The data user requires that the utility of
the released data be good. The attacker, who could be the data user, also observes the
released data, and wants to guess the secrets of the original data. Note that we focus
on secrets about the underlying distribution (e.g., mean, quantile, standard deviation, of
a specific data column), whereas many existing frameworks (e.g., differential privacy [3],
anonymization [4], sub-sampling [4]) protect information from individual samples (rows).
Our goal is to provide a distributional privacy toolbox for data holders to use. The toolbox
contains data release mechanisms for a set of pre-defined secrets and data distributions.
Data holders can choose the mechanism according to the secret they want to hide and the
closest data distributions.

{x1, . . . , xn}, where for each i ∈ [n], xi ∈ Rp is drawn i.i.d. from an underlying distribution.

We assume the distribution comes from a parametric family, and the parameter vector

θ ∈ Rq of the distribution fully specifies the distribution. That is, xi ∼ pXθ
, where we

further assume that θ is itself a realization of random parameter vector Θ, and pΘ is the

probability measure for Θ. We assume that the data holder knows θ (and hence knows

its full data distribution pXθ
); our results and mechanisms can be generalized to the case

where the data holder only possesses the dataset X (see § 4.3.4).

For example, suppose the original data samples come from a Gaussian distribution.

We have θ = (µ, σ), and Xθ ∼ N (µ, σ). pΘ (or fΘ) describes the prior distribution over

(µ, σ). For example, if we know a priori that the mean of the Gaussian is drawn from

a uniform distribution between 0 and 1, and σ is always 1, we could have fΘ (µ, σ) =

64

I (µ ∈ [0, 1]) · δ (σ), where I (·) is the indicator function, and δ is the Dirac delta function.

In practice, the underlying distribution can be much more complicated than a Gaussian.

In general, the data can be multi-dimensional (i.e., p > 1). We study one-dimensional

data as a starting point.

Distributional secrets to protect. We assume the data holder wants to hide ℓ ∈
Z>0 secrets from the original data distribution. Since the true data distribution is fully-

specificed by parameter vector θ, these secrets can be expressed as a function g (θ) : Rq →
Rℓ. In the Gaussian example Xθ ∼ N (µ, σ), suppose the random variable Xθ represents

the traffic volume experienced by an enterprise in a day. The data holder may wish to hide

the mean traffic per day, in which case g(·) would be the mean of the distribution, i.e.,

g (µ, σ) = µ. In this example, we are hiding only one secret (the mean), so ℓ = 1. In general,

the secret can be any (vector-valued) function that can be deterministically computed from

θ. As shown in Fig. 4.3, the secret could be derived from one feature (e.g., mean salary)

or computed from multiple features (e.g., the mean salary of males). The secrets could

also be multi-dimensional (e.g., mean salary and the fraction of males). In this section, we

present general results for one-dimensional secrets (i.e., ℓ = 1) and defer the discussion of

higher-dimensional secrets to future work (see § 4.3.6).

Data release mechanism. The data holder releases data by passing the private pa-

rameter θ through a data release mechanism Mg. That is, for a given θ, the data holder

first draws internal randomness z ∼ pZ , and then releases another distribution parameter

θ′ = Mg (θ, z), where Mg is a deterministic function, and pZ is a fixed distribution from

which z is sampled. Note that we assume that both the input and output of Mg are

distribution parameters, but it is straightforward to generalize to the case when the input

and/or output are datasets of samples (see § 4.3.4).

For example, in the Gaussian case discussed above, the data release mechanism can be

Mg ((µ, σ) , z) = (µ + z, σ) where z ∼ N (0, 1). In other words, this mechanism shifts the

mean of the Gaussian by a random amount drawn from a standard Gaussian distribution

and keeps the variance unchanged.

Threat Model. We assume that the attacker knows the parametric family from which

our data is drawn, but does not know the initial parameter θ. The attacker is also assumed

to know the data release mechanismMg and output θ′ but not the realization of the data

holder’s internal randomness z. The attacker guesses the initial secret g (θ) based on the

released parameter θ′ according to estimate ĝ (θ′). ĝ can be either random or deterministic,

and we assume that the adversary has no computational bounds. For instance, in the

65

running Gaussian example, an attacker may choose ĝ (µ′, σ′) = µ′. When the data holder

releases a dataset of samples instead of the parameter θ′, this formulation can be used to

upper bound the attacker’s accuracy in correctly guessing the secret, since the estimation

error on released distribution parameter is induced due to the finite samples in the released

dataset.

Privacy metric. The data holder wishes to prevent an attacker from guessing its secrets.

We define our privacy metric privacy Πϵ as the attacker’s probability of guessing the

secret(s) within a tolerance ϵ, in the worst-case over all attackers ĝ:

Πϵ ≜ sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
, (4.8)

where the probability is taken over the randomness of the original data distribution (θ ∼
pΘ), the data release mechanism (z ∼ pZ), and the attacker strategy (ĝ).

Distortion metric. The main goal of data sharing is to provide useful data; hence,

we (and data holders and users) want to understand how much the released data distorts

the original data. We define the distortion ∆ of a mechanism as the worst-case distance

between the original distribution and the released distribution:

∆ ≜ sup
θ∈Supp(pΘ),θ′,

z∈Supp(pZ):Mg(θ,z)=θ′

d
(
pXθ
∥pXθ′

)
, (4.9)

where d is a general distance metric defined over distributions. The choice of the distance

metric depends on the data type and potentially on the applications that data holders

and users care about. For example, if the data holders or users have concrete metrics

that they want to preserve (e.g., the difference between the mean salaries of males and

females in Fig. 4.3), they could use this quantity as the distance metric. Otherwise, one

can use statistical distance metrics between distributions (e.g., total variation distance,

Wasserstein distance). In this dissertation, we adopt Wasserstein-1 distance for continuous

distributions and total variation (TV) distance for discrete distributions. These distances

are often used for evaluating data quality (e.g., [6, 12]) and as the distance metric in neural

network design (e.g., [103, 166]). Note that the definition in Eq. (4.9) can be extended to

data release mechanisms that take datasets as inputs and/or outputs.

Objective. To summarize, the data holder’s objective is to choose a data release mecha-

66

nism that minimizes the distortion metric ∆ subject to a constraint on privacy Πϵ:

min
Mg

∆ subject to Πϵ ≤ T. (4.10)

The optimal data release mechanisms for Eq. (4.10) depends on the secrets, the

distance metric d used in Eq. (4.9), and the characteristics of the original data. In practice,

we envision a distributional privacy toolbox (Fig. 4.3) that encodes data release mechanisms

for a list of predefined secrets, d, and data distributions. Data holders would specify the

secret function they want to protect and the desired distance metric; the toolbox would

select the data distribution parametric family that most closely reflects the holder’s raw

data and use the corresponding data release mechanism to process the raw data for sharing.

4.3.2 Privacy-Distortion Tradeoffs

Given the privacy budget, we present a lower bound on distortion that applies regardless

of the prior distribution of data pΘ and regardless of the secret g. As discussed in § 4.3.1,

we assume that the secret is scalar (i.e., ℓ = 1).

Theorem 4.3.2.1 (Lower bound of privacy-distortion tradeoff). Let D (Xθ1 , Xθ2) ≜ 1
2d
(
pXθ1
∥pXθ2

)
,

where d (·∥·) is defined in Eq. (4.9). Further, let R (Xθ1 , Xθ2) ≜ |g(θ1)− g(θ2)|. Let γ ≜

infθ1,θ2∈Supp(pΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
. For any T ∈ (0, 1), when Πϵ ≤ T , we have ∆ >

(
⌈ 1T ⌉ − 1

)
·2γϵ.

From Theorem 4.3.2.1 we know that the lower bound of distortion is inversely cor-

related with the privacy budget and positively correlated with the guess tolerance ϵ. Note

that we have not made the dependent quantity γ in the lower bound specific as its exact

form depends on the type of the secret. We will instantiate it in the cases studies in § 4.3.4.

4.3.3 Data Release Mechanism Design

In this section, we present a general template of our data release mechanisms that we will

use across all case studies in § 4.3.4. We divide the set of possible distribution parameters

Supp (Θ) into subsets Si such that ∪i∈ISi ⊇ Supp (Θ) and Si1 ∩ Si2 = ∅ for i1 ̸= i2, where

I is the set of indices of the subsets. For θ ∈ Supp (Θ), I (θ) is the index of the set that

θ belongs to; in other words, we have I (θ) = i, where θ ∈ Si. The mechanism works by

looking up which set θ belongs to (i.e., I (θ)), and deterministically releasing a parameter

θ∗I(θ) that corresponds to the set. Here, θ∗i for i ∈ I denotes another parameter. In short,

67

our data release mechanism has the form

Mg (θ, z) = θ∗I(θ) .

We call this class of data release mechanisms many-to-one mechanisms. The policy is fully

determined by Si and θ∗i . Throughout the remainder of this chapter, we will demonstrate

different ways of instantiating many-to-one mechanism to achieve (exactly or approxi-

mately) the lower bound in § 4.3.2.

Intuitively, many-to-one mechanisms will have a bounded distortion as long as d

(
pXθ
∥pXθ∗

I(θ)

)
is bounded for all θ ∈ Supp (Θ). At the same time, they obfuscate the secret as different

data distributions within the same set are mapped to the same released parameter. It turns

out this simple deterministic mechanism is sufficient to achieve optimal privacy-distortion

tradeoffs in many cases, as opposed to the requirement for randomness in DP [3]. We will

see examples in the case studies § 4.3.4.

4.3.4 Case Studies

We have results for a set of secrets (e.g., mean, quantile, fraction, standard deviation) over

a set of distributions (e.g., Gaussian, uniform, exponential, geometric, binomial, Poisson,

categorical). In this dissertation, we show a few typical examples, including mean of

continuous distributions, quantile of exponential distributions, and fractions of categorical

distributions.

Mean of Continuous Distributions

As discussed in § 4.1, the mean of the distributions can reveal sensitive information. In this

section, we discuss how to protect the mean of continuous distributions. We first analyze

the lower bound.

Corollary 4.3.4.1 (Privacy lower bound, secret = mean of a continuous distribution).

Consider the secret function g (θ) =
∫
x xfXθ

(x) dx. For any T ∈ (0, 1), when Πϵ ≤ T , we

have ∆ >
(
⌈ 1T ⌉ − 1

)
· ϵ.

Indeed, we can construct a data release mechanism that achieves a tradeoff close to

this bound.

68

Data release mechanism. We consider continuous distribution that can be parame-

terized with a location parameter, and the prior distribution of the location parameter

is uniform and independent of other factors. More specifically, we make the following

assumption.

Assumption 4.3.4.1. The distribution parameter vector θ can be written as (u, v), where

u ∈ R, v ∈ Rq−1, and for any u ̸= u′, fXu,v (x) = fXu′,v (x− u′ + u). The prior over

distribution parameters is fU,V (a, b) = fU (a) · fV (b), where fU (a) = 1
u−uI (a ∈ [u, u)).

Examples of distributions that satisfy this assumption include the Gaussian, Laplace,

and uniform distributions, as well as shifted distributions (e.g., shifted exponential, shifted

log-logistic). The mechanism for this case is as follows.

Mechanism 4.3.4.1 (For secret = mean of a continuous distribution). The parameters

of the data release mechanism are

Si,v = {(t, v) |t ∈ [u + i · s, u + (i + 1) · s)} , (4.11)

θ∗i,v = (u + (i + 0.5) · s, v) , (4.12)

I = {(i, v) : i ∈ {0, 1, . . . , N − 1} , v ∈ Supp (pV)} , (4.13)

where s is a hyper-parameter of the mechanism that divides (u− u) and N = u−u
s ∈ N.

Fig. 4.4 shows an example when the original data distribution is Gaussian, i.e.,

Xθ ∼ N (u, v), and u ∈
[
µ, µ

)
. Intuitively, our data release mechanism “quantizes” the

range of possible mean values into segments of length s. It then shifts the mean of private

distribution fXu,v to the midpoint of its corresponding segment, and releases the resulting

distribution. This simple deterministic mechanism is able to achieve order-optimal privacy-

distortion tradeoff in some cases, as shown below.

Proposition 4.3.4.1. Under Assumption 4.3.4.1, Mechanism 4.3.4.1 has ∆ = s
2 and

Πϵ ≤ 2ϵ
s .

The two takeaways from this proposition are that: (1) data holder can use s to control

the tradeoff between distortion and privacy, and (2) the mechanism is order-optimal. To

see that, we can observe that this mechanism can achieve ∆ = ϵ
T for a privacy budget T .

This quantity is on the same order as the lower bound in Proposition 4.3.4.1 w.r.t. ϵ and

T .

69

𝑓!!",$"

𝑓"!,$

𝑠 𝑠

𝑢 + 𝑠𝑢 $𝑢 = 𝑢 + 2𝑠

𝑢 + 0.5𝑠 𝑢 + 1.5𝑠

Figure 4.4: Illustration of the data release mechanism for continuous distributions when
secret=mean.

Quantile of Exponential Distributions

As indicated in § 4.1, the quantiles of the distributions can reveal sensitive information.

In this section, we discuss how to protect the quantiles of exponential distributions. More

specifically, the distribution parameter is θ = λ, where λ is the scale parameter. In other

words, fXλ
(x) = 1

λe
−x/λ.

We first analyze the lower bound.

Corollary 4.3.4.2 (Privacy lower bound, secret = α-quantile of a continuous distribution).

Consider the secret function g (θ) = α-quantile of fXθ
. For any T ∈ (0, 1), when Πϵ ≤ T ,

we have ∆ >
(
⌈ 1T ⌉ − 1

)
· ϵ
− ln(1−α) (i.e., γ = − 1

2 ln(1−α)).

We can see that the γ parameter in this bound only depends on the value of α, and

as γ increases, the lower bound becomes smaller.

Next, we provide data release mechanisms. Here, we assume that the parameters of

the original data are drawn from a uniform distribution with lower and upper bounds. In

more details, we make the following assumption.

Assumption 4.3.4.2. The prior over distribution parameter is pλ is a uniform distribution

over
[
λ, λ

)
.

The parameters of the data release mechanism are specified below.

70

Mechanism 4.3.4.2 (For secret = quantile of a continuous distribution).

Si = [λ + i · s, λ + (i + 1) · s) ,

θ∗i = λ + (i + 0.5) · s ,

I = N,

where s > 0 is a hyper-parameter of the mechanism that divides
(
λ− λ

)
.

This data release mechanism achieve the following ∆ and Πϵ.

Proposition 4.3.4.2. Under Assumption 4.3.4.2, Mechanism 4.3.4.2 achieves ∆ = 1
2s

and Πϵ = 2ϵ
− ln(1−α)s .

The two takeaways are that: (1) data holder can use s to control the tradeoff between

distortion and privacy, and (2) the mechanism is order-optimal. To see that, we observe

this mechanism achieves Πϵ · ∆ ≤ 2γϵ. This is in the same order as the lower bound

∆ >
(
⌈ 1
Πϵ
⌉ − 1

)
· 2γϵ.

Fraction of Categorical Distributions

As discussed in § 4.1, the fractions of the distributions can reveal sensitive information.

In this section, we discuss how to protect the fractions of categorical distributions. More

specifically, we assume that θ = (p1, p2, . . . , pC) s.t. pi ∈ [0, 1] ∀i ∈ [C] and
∑

i pi = 1.

We first analyze the lower bound. Without loss of generality, we assume that we

want to protect the fraction of the j-th bin, i.e. pj .

Corollary 4.3.4.3 (Privacy lower bound, secret = fraction of a general discrete distribu-

tion). Consider the secret function g (θ) = p1. For any T ∈ (0, 1), when Πϵ ≤ T , we have

∆ >
(
⌈ 1T ⌉ − 1

)
· ϵ.

In other words, the γ parameter in this bound is a constant. The lower bound purely

depends on the privacy budget T and the threshold for attackers’ guess ϵ.

Next, we present the data release mechanism under the following assumption.

Assumption 4.3.4.3. The prior distribution of (p1, . . . , pC) is a uniform distribution over

all the probability simplex {(p1, . . . , pC)|pi ∈ [0, 1) ∀i ∈ [C] and
∑

i pi = 1}.

71

Mechanism 4.3.4.3 (For secret = fraction of a general discrete distribution). The pa-

rameters of the mechanism are as follows.

Sp1,...,pC =

{(
p1 −

t

C − 1
, . . . , pj−1 −

t

C − 1
, pj + t,

pj+1 −
t

C − 1
, . . . , pC −

t

C − 1

)∣∣∣∣t ∈ [−s

2
,
s

2

)}
,

θ∗p1,...,pC =

(
p1 − T, . . . , pj−1 − T, pj + (C − 1)T,

pj+1 − T, . . . , pC+1 − T

)
,

where T = min {p1, . . . , pj−1, pj+1, . . . , pC , 0}, and

I =

{
(p1, . . . , pC)

∣∣∣∣∀i pi ∈ (− s

2 (C − 1)
, 1

]
,
∑
i

pi = 1,

pj = (k + 0.5) s,where k ∈ {0, 1, . . . , C − 1}
}
.

Here s > 0 is a hyper-parameter of the mechanism that divides 1.

This data release mechanism achieve the following ∆ and Πϵ.

Proposition 4.3.4.3. Under Assumption 4.3.4.3, Mechanism 4.3.4.3 has the following ∆

and Πϵ value/bound.

∆ =
s

2
,

Πϵ <
2ϵ

s
+ 1−

(
1− s

C − 1

)C−1

.

To understand this bound, we can see that when C is large, the bound for Πϵ ≈
2ϵ
s + 1− e−s. When s is small, 2ϵ

s dominates the above term. In those cases, s can be used

to control the tradeoff between distortion and privacy. In addition, Πϵ ·∆ ≈ ϵ. This is in

the same order as the lower bound ∆ >
(
⌈ 1
Πϵ
⌉ − 1

)
· ϵ.

72

Extending Data Release Mechanisms for Dataset Input/Output

The data release mechanisms discussed in previous sections assume that data holders know

the distribution parameter of the original data. In practice, data holders often only have

a dataset of samples from the data distribution and do not know the parameters of the

underlying distributions. As mentioned in § 4.3.1, our data release mechanisms can be

easily adapted to handle dataset input/output. In this section, we discuss how to achieve

that.

The high-level idea is that the data holders can estimate the distribution parameters

from the data samples, and find the corresponding Si according to the estimated param-

eters. Then the original samples are modified as if they are sampled according to the

parameter θ∗i . As an example, we present the concrete procedure for the case where secrete

is the mean of continuous distributions. For a dataset of X = {x1, . . . , xn}, the procedure

is as follows:

1. Estimate the mean from the data samples: µ̂ = 1
n

∑
i∈[n] xi.

2. According to Eq. (4.11), compute the index of the corresponding set i = ⌊ µ̂−µ

s ⌋.
3. According to Eq. (4.12), change the mean of the data samples to µtarget = µ+(i + 0.5)·s.
4. This can be done by sample-wise operation x′i = xi − µ̂ + µtarget.

5. The released dataset is Mg (X , z) = {x′1, . . . , x′n}.
Note that this mechanism applies to samples. Therefore, it can be applied either to

the original data, or as an add-on to our GAN-based data sharing framework [8, 12, 6, 167,

168].

4.3.5 Experiments

In the previous sections, we demonstrated the optimality of our data release mechanisms

through theoretical analysis. In this section, we focus on other orthogonal questions

through real-world experiments: (1) how well our data release mechanisms perform when

their assumptions do not hold in practice, and (2) why existing privacy frameworks are not

suitable for distributional privacy.

Dataset. We use three real-world datasets to simulate each of the motivating scenarios in

§ 4.1. (1) Wikipedia Web Traffic Dataset (WWT) [160], which contains the daily page views

of 145,063 Wikipedia web pages in 2015-2016. To prepare the data for our experiments, we

remove web pages with empty page view records on any day (117,277 left), and compute

73

the mean page views for each web page across all dates. Our goal is to release the page

views (a 117,277-dimensional vector) while protecting the mean of the distribution (which

reveals the business scales of the company as described in § 4.1). (2) Google Cluster Trace

Dataset (GCT) [169], which contains usage logs (e.g., CPU/memory) from an internal

Google cluster with 12.5k machines in 2011. We use “platform ID” field of the dataset,

which represents “microarchitecture and chipset version of the machine” [169]. Our goal is

to release a distribution of platform ID while protecting the fraction of a specific platform ID

(which reveals business strategy as described in § 4.1). (3) Measuring Broadband America

Dataset (MBA) [170], which contains network statistics (including network traffic counters)

collected by United States Federal Communications Commission from homes across the

United States. We select the average network traffic (in GB per measurement) from AT&T

clients as our data. Our goal is to release a copy of this data while hiding the 0.95-quantile

(which reveals the network capability as described in § 4.1).

Baselines. We compare our mechanisms discussed in § 4.3.4 with two popular mechanisms

proposed in prior work: differentially-private density estimation [149] (shortened to DP)

and attribute-private Gaussian mechanism [171] (shortened to AP). For a dataset of sam-

ples X = {x1, ..., xn}, DP works by: (1) Dividing the space into m bins: B1, ..., Bm.1 (2)

Computing the histogram Ci =
∑n

j=1 I (xj ∈ Bi). (3) Adding noise to the histograms Di =

max {0, Ci + Laplace (0, ϵ)}, where Laplace
(
0, ϵ2

)
means a random noise from Laplace dis-

tribution with mean 0 and variance ϵ2. (4) Normalizing the histogram pi = Di∑m
j=1 Dj

. We

can then draw yi according to the histogram and release Y = {y1, ..., yn} with differential

privacy guarantees. AP works by releasing Y =
{
xi +N

(
0, ϵ2

)}n
i=1

.2

Metrics. Our privacy and distortion metrics rely on the prior distribution of the original

data θ ∼ pΘ (though the mechanism does not). In practice (and also in these experiments),

the data holder typically only has access to one dataset, which means we cannot evaluate

these metrics directly. Instead, we use surrogate metrics as a way to bound our true privacy

and distortion.

Surrogate privacy metric. For an original dataset X = {x1, ..., xn} and the released dataset

Y = {y1, ..., yn}, we define the surrogate privacy metric Π̃ϵ as the error of an attacker

who guesses the secret of the released dataset as the true secret: Π̃ϵ ≜ − |g (X)− g (Y)|,
1In Google Cluster Trace Dataset, the bin is already pre-specified (i.e., the platform IDs), so this step

is skipped.
2In Google Cluster Trace Dataset, the Gaussian noise N

(
0, ϵ2

)
are added to the counts of different

platform IDs. We then normalize the counts and sample released platform IDs from this categorical distri-
bution.

74

where g (D) = mean of D, fraction of a specific platform ID in D, and 0.95-quantile of

D in WWT, GCT, and MBA datasets respectively. Note that a minus sign is added

to the definition of Π̃ϵ so that a smaller value indicates stronger privacy, as in privacy

metric Eq. (4.8). This simple attacker strategy is in fact a good proxy for evaluating the

privacy Πϵ for the following reasons. (1) For our data release mechanisms for these secrets

(Mechanisms 4.3.4.1 to 4.3.4.3), when the prior distribution is uniform, this strategy is

actually optimal, so there is a direct mapping between Π̃ϵ and Πϵ. (2) For AP applied

on protecting mean of the data (i.e., in Wikipedia Web Traffic Dataset experiments), this

strategy gives an unbiased estimator of the secret. (3) For DP and AP in other cases, this

mechanism may not be an unbiased estimator of the secret, but it gives an upper bound on

the attacker’s error.

Surrogate distortion metric. We define our surrogate distortion metric as the distance

between the two datasets: ∆̃ ≜ d (pX ∥pY) where pD denotes the empirical distribution of

a dataset D, and d is defined as in our formulation § 4.3.1 (i.e., Wassersstein-1 distance for

continuous distributions in WWT and MBA, and the TV distance for discrete distributions

in GCT). This metric evaluates how much the mechanism distorts the dataset.

In fact, we can deduce a theoretical lower bound for the surrogate privacy and distor-

tion metrics for secret = mean/fractions (shown later in Fig. 4.5) using similar techniques

as the proofs of the main results.

AP
DP
Ours
Lower bound

0 500 1000
Surrogate metric for distortion

−800

−600

−400

−200

0

Su
rro

ga
te

 m
et

ric
 fo

r p
riv

ac
y

(a) Wikipedia Web Traffic
Dataset.

AP
DP
Ours
Lower bound

0.00 0.01 0.02 0.03
Surrogate metric for distortion

−0.03

−0.02

−0.01

0.00

Su
rro

ga
te

 m
et

ric
 fo

r p
riv

ac
y

(b) Google Cluster Trace
Dataset.

0.0 0.2 0.4 0.6
Surrogate metric for distortion

−2.0

−1.5

−1.0

−0.5

0.0

Su
rro

ga
te

 m
et

ric
 fo

r p
riv

ac
y

AP
DP
Ours

(c) Measuring Broadband
America Dataset.

Figure 4.5: Privacy (lower is better) and distortion (lower is better) of AP, DP and our
data release mechanisms. Each point represents one instance of the data release mechanism
with one hyper-parameter. “Lower bound” is the theoretical lower bound of the achievable
region. Our data release mechanisms achieve a better privacy-distortion tradeoff than AP
and DP.

Results. We enumerate the hyper-parameters of each method (bin size and ϵ for DP, ϵ

75

for AP, and s for ours). For each method and each hyper-parameter, we compute their

surrogate privacy and distortion metrics. The results are shown in Fig. 4.5 (bottom left

is best); each data point represents one realization of mechanism Mg under a distinct

hyper-parameter setting. Two takeaways are as follows.

(1) Our data release mechanisms has good privacy-distortion tradeoffs even when the as-

sumptions do not hold. We envision that data holders can choose the data release mech-

anisms in the toolbox (Fig. 4.3) that matches their needs. However, in practical scenarios,

the data distributions supported in the toolbox may not always exactly match real data.

Our data release mechanisms for mean (i.e., Mechanism 4.3.4.1 used in WWT) and frac-

tions (i.e., Mechanism 4.3.4.3 used in GCT) support general continuous distributions and

categorical distributions, so there is no such distribution gap. Indeed, even for these sur-

rogate metrics, our Mechanism 4.3.4.1 and Mechanism 4.3.4.3 are also optimal. This is

visualized in Figs. 4.5a and 4.5b where we can see that our data release mechanisms match

the theoretical lower bound of the tradeoff. However, our data release mechanisms for

quantiles (i.e., Mechanism 4.3.4.2 used in Fig. 4.5c) are order-optimal only when the distri-

butions follow the pattern of exponential distributions (§ 4.3.4). Despite the distribution

mismatch, our data release mechanism still achieves a good privacy-distortion compared

to DP and AP (Fig. 4.5c). More discussions are below.

(2) Our data release mechanisms achieve better privacy-distortion tradeoff than DP and

AP. AP directly adds Gaussian noise to each sample, which does not change the mean of

the distribution on expectation. As a result, Figure 4.5 shows that AP has a poor privacy-

distortion tradeoff. DP quantizes (bins) the samples before adding noise. Quantization has

a better property in terms of protecting the mean of the distribution, and therefore we see

that DP has a better privacy-distortion tradeoff than AP, but still worse than ours. Note

that in Fig. 4.5c, a few of the DP instances have better privacy-distortion tradeoffs than

ours. This is not an indication that DP is fundamentally better. Instead, it is due to the

randomness in DP (from the added Laplace noise), and some realizations of the specific

noise in this experiment happened to lead to a better tradeoff. Another instance of the DP

algorithm could lead to a poor tradeoff, so DP’s achievable tradeoff points are widespread.

In contrast, our data release mechanism has a better worst-case guarantee as indicated by

the concentration of the tradeoff curve. In summary, these results confirm that DP and

AP are not suitable for distributional privacy, and our distributional privacy framework

provides better practical protections of distributional privacy.

76

4.3.6 Discussions

In this section, we show the initial promise of distributional privacy framework for defining,

analyzing, and protecting distributional privacy concerns in data sharing applications. Our

theoretical framework can be used to analyze the leakage of distributional information and

the privacy-distortion tradeoffs of data release mechanisms (§ 4.3.1). Our data release

mechanisms can be used to protect distributional information and are compatible with

existing privacy-preserving data release frameworks (e.g., GANs) (§ 4.3.4). However, these

results open up more research questions than they answered.

The distance metric d (Eq. (4.9)) and the secret function g (§ 4.3.1). These

are the (only) two parameters that users need to provide to our distributional privacy

framework. The distance metric d describes the properties of data that need to be preserved,

while the secret function g captures what needs to be obfuscated. While we only discuss a

limited set of secrets (§ 4.3.4) and distance metrics (§ 4.3.1), we believe that this framework

is general for much broader use cases. Open questions include how to analyze the privacy-

distortion tradeoff (and design mechanisms) for more secret types, multiple secrets, and

other distance metrics. Our framework could also provide new insights into commonly used

data sharing practices. For example, one widely used mechanism is to release normalized

data [57, 15]. Although this mechanism was purely based on heuristic, it could actually be

optimal (in terms of privacy-distortion tradeoff) under our framework for some specific d

and g (e.g., when d is the distribution distance in the normalized space and g is the mean

of the distribution). By analyzing the pairs of (d, g) for which a mechanism is optimal, we

can have a better understanding of what the mechanism is good for.

The dimension and the type of the distributions. In this section, we consider a

limited set of one-dimensional distributions. One important future direction is to expand

this set of distributions so as to enrich the distributional privacy toolbox (Fig. 4.3) for

users.

Extensions. One limitation of the current privacy metric Πϵ is that it depends on the

prior distribution of the parameters pΘ, which is often unknown in many applications.

Motivated by maximal leakage [172], one possibility is to consider a normalized privacy

metric:

Π′
ϵ ≜ sup

pΘ

log
Πϵ

supĝ P (ĝ (pΘ) ∈ [g (θ)− ϵ, g (θ) + ϵ])
,

77

where ĝ (pΘ) is an attacker that knows the prior distribution but does not see the released

data, and the denominator is the probability that the strongest attacker guesses the secret

within tolerance ϵ. Similar to maximal leakage, we then take the log to transform the

unit to nats, and then consider the worst-case leakage among all possible priors. This

normalized Π′
ϵ has a completely different meaning to Πϵ: it considers how much additional

“information” that the released data provides to the attacker in the worst-case scenario. It

would be interesting to study the feasibility of this formulation and the associated privacy-

distortion tradeoffs and mechanisms.

4.4 Chapter Summary

In this chapter, we study the two important privacy concerns: sample-level privacy and

distributional privacy. Regarding sample-level privacy, we show that GANs without any

special training mechanism have DP guarantees and are robust to membership inference

attacks. However, the DP guarantee is too weak to be provide protection. To enhance

GANs’ sample-level privacy guarantees, we explore the use of DP-SGD, but we find that it

significantly reduces the fidelity of GANs. To address this challenge, we propose to pretrain

GANs on public data before training on the private data, which shows promising results.

Regarding distributional privacy, we propose a new theoretical framework for defining,

analyzing, and protecting these concerns. We analyze the fundamental achievable privacy-

distortion tradeoffs and propose practical data release mechanisms that are close to the

optimal bounds. We demonstrate on real-world datasets that our mechanisms achieve

better privacy-distortion tradeoffs than existing privacy frameworks such as differential

privacy and attribute privacy.

Broader impacts. The privacy concerns addressed in this chapter are not limited to

data sharing applications but also extend to other GAN applications, such as content

creation [55], as long as the training data is sensitive. Our theoretical results and proposed

techniques can be applied to these applications as well.

More broadly, our distributional privacy framework is a general framework for ana-

lyzing distributional concerns. The proposed data release mechanisms can be used not only

with GANs, but also with other data sharing frameworks. For example, they can be used

to modify synthetically generated samples after they are generated (by any framework), to

modify the training dataset for a generative model, or to directly modify the original data

for release.

78

Chapter 5

Applications

In this chapter, we explore how we can use the insights from previous chapters to

build data sharing tools for concrete applications. We observe that time series is common

in many applications, and we use it as a case study. Applying GANs, which were originally

successful in image generation, to time series data presents additional challenges in terms of

fidelity. We design new network architectures and loss functions to tackle these challenges

(§ 5.1). We package our time series generator, along with all the algorithmic advances

discussed in this dissertation, into a modular package to facilitate the development of data

sharing tools for future applications (§ 5.2). To demonstrate the utility of our tool, we

present the performance of our system in time series data from the systems and networking

domains as case studies (§ 5.3). Finally, we conclude this chapter in § 5.4.

5.1 Meta Architecture for Time Series Data

5.1.1 Motivation

Time series data is widely used in many domains. In medical domains, we have health

record measurements, such as oxygen saturation, heart rate, and respiratory rate [173],

which can be used to train diagnosis systems. In financial domains, we have bank transac-

tion data [174], which can be used for fraud detection [175] and user behavior analysis. In

web domains, we have webpage view data with metadata of URLs, which can be used to pre-

dict future views, analyze page correlations [176], or generate recommendations [177, 178].

In networking domains, we have network measurements of packet loss rate, bandwidth,

and delay, with metadata such as location or device type that are useful for network man-

agement [56]. In systems domains, we have cluster usage measurements of metrics such as

CPU/memory usage associated with metadata (e.g., server and job type) that can inform

resource provisioning [179] and job scheduling [180]. In this chapter, we take time series

data as an example and aim to design a GAN-based data sharing tools for these datasets.

79

5.1.2 Problem Formulation

At a high level, the time series data in many of the examples above consists of time series

samples (e.g., bandwidth measurements) with high-dimensional data points and associated

metadata that can be either numeric or categorical (e.g., IP address, location). We abstract

them as follows: A dataset D =
{
O1, O2, ..., On

}
is defined as a set of samples Oi (e.g.,

the clients). Each sample Oi = (Ai, Ri) contains m metadata Ai = [Ai
1, A

i
2, ..., A

i
m]. For

example, metadata Ai
1 could represent client i’s physical location, and Ai

2 the client’s ISP.

Note that we can support datasets in which multiple samples have the same set of metadata.

The second component of each sample is a time series of records Ri = [Ri
1, R

i
2, ..., R

i
T i],

where Ri
j means j-th measurement of i-th client. Different samples may contain a different

number of measurements. The number of records for sample Oi is given by T i. Each record

Ri
j = (tij , f

i
j) contains a timestamp tij , and K measurements f i

j = [f i
j,1, f

i
j,2, ..., f

i
j,K]. For

example, tij represents the time when the measurement f i
j is taken, and f i

j,1, f
i
j,2 represent

the ping loss rate and traffic byte counter at this timestamp respectively. Note that the

timestamps are sorted, i.e. tij < tij+1 ∀1 ≤ j < T i. This abstraction fits many classes of

data that appear in the wild. Our problem is to take any such dataset as input and learn

a model that can generate a new dataset D′ as output.

5.1.3 Challenges

The first challenge relates to long-term temporal correlations. As we see in Fig. 5.1, the

canonical GAN does poorly in capturing temporal correlations trained on the Wikipedia

Web Traffic Dataset (WWT) dataset.1 Concurrent and prior work on using GANs for other

time series data has also observed this [185, 77, 8, 186]. One approach to address this is

segmenting long datasets into chunks; e.g., TimeGAN [186] chunks datasets into smaller

time series each of 24 epochs, and only evaluates the model on producing new time series

of this length [187]. This is not viable in our domain, as relevant properties of network-

ing/systems data often occur over longer time scales (e.g., network measurements) (see

Fig. 5.1). Second, mode collapse is a well-known problem in GANs where they generate

only a few modes of the underlying distribution [46, 166, 103, 104]. We have discussed how

to alleviate mode collapse in § 3.2. But as we will see that, the mode collapse problem here

1This uses: (1) a dense multilayer perceptron (MLP) which generates measurements and metadata
jointly, (2) an MLP discriminator, and (3) Wasserstein loss [103, 104], consistent with prior work [181, 182,
183, 184].

80

0 100 200 300 400 500
Time lag (days)

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

Au
to

co
rre

la
tio

n DoppelGANger

Real

Real
DoppelGANger
RNN
AR
HMM
Naive GAN
TimeGAN
RCGAN
MarketSimulator

Figure 5.1: Autocorrelation of daily page views for Wikipedia Web Traffic Dataset.

is unique in time series data when there is the high variability in the range of measurement

values. Finally, we need to capture complex relations between measurements and metadata

(e.g., packet loss rate and ISP), and across different measurements (e.g., packet loss rate

and byte counts). As such, state-of-the-art approaches either do not co-generate attributes

with time series data or their accuracy for such tasks is unknown [8, 188, 186], and directly

generating joint metadata with measurements samples does not converge (§ 5.3). Fur-

ther, generating independent time series for each measurementdimension will break their

correlations.

5.1.4 DoppelGANger (DG) Design

In this section, we describe how we tackle fidelity shortcomings of time series GANs. Recall

that existing approaches have issues in capturing temporal effects and relations between

metadata and measurements. In what follows, we present our solution starting from the

canonical GAN strawman and extend it to address these challenges. Finally, we summarize

the design and guidelines for users to use our workflow.

Capturing long-term effects

Recall that the canonical GAN generator architecture is a fully-connected multi-layer per-

ceptron (MLP), which we use in our strawman solution (§ 5.1.3). As we saw, this archi-

tecture fails to capture long-term correlations (e.g., annual correlations in page views).

RNN primer and limitations. Similar to prior efforts, we posit that the main reason

81

R1 R2 R3 R4 RT

RNN RNN RNN RNN RNN

…

Pass 1 Pass 2 Pass 3 Pass 4 Pass T

R1 R2 R3 R4 RT

RNN

…

Pass 1

RNN

Pass 2

RNN

Pass T/3

…

…
(a)

R1 R2 R3 R4 RT

RNN RNN RNN RNN RNN

…

Pass 1 Pass 2 Pass 3 Pass 4 Pass T

R1 R2 R3 R4 RT

RNN

…

Pass 1

RNN

Pass 2

RNN

Pass T/3

…

…

(b)

Figure 5.2: (a) The usual way of generating time series. (b) Batch generation with S = 3.
The RNN is a single neural network, even though many units are illustrated. This unrolled
representation conveys that the RNN is being used many times to generate samples.

is that MLPs are not well suited for time series. A better choice is to use recurrent neural

networks (RNNs), which are designed to model time series and have been widely used in

the GAN literature to generate time series [189, 8, 77, 188, 186]. Specifically, we use a

variant of RNN called long short-term memory (LSTM) [190].

At a high level, RNNs work as follows (Fig. 5.2 (a)). Instead of generating the entire

time series at once, RNNs generate one record Ri
j at a time (e.g., page views on the jth

day), and then run T i (e.g., the number of days) passes to generate the entire time series.

The key difference in a RNN from traditional neural units is that RNNs have an internal

state that implicitly encodes all past states of the signal. Thus, when generating Ri
j , the

RNN unit can incorporate the patterns in Ri
1, ..., R

i
j−1 (e.g., all page views before the j-th

day). Note that RNNs can learn correlations across the dimensions of a time series, and

produce multi-dimensional outputs.

However, we empirically find that RNN generators still struggle to capture temporal

correlations when the length exceeds a few hundred epochs. The reason is that for long

time series, RNNs take too many passes to generate the entire sample; the more passes

taken, the more temporal correlation RNNs tend to forget. Prior work copes with this

problem in three ways. The first is to generate only short sequences [189, 77, 186]; long

datasets are evaluated on chunks of tens of samples [186, 187]. The second approach is to

train on small datasets, where rudimentary designs may be able to effectively memorize

long term effects (e.g. unpublished work [191] generates time series of length 1,000, from

82

0 10 20 30 40 50
S

0.001

0.002

0.003

M
ea

n
sq

ua
re

 e
rro

r

Figure 5.3: Error vs. batch parameter.

a dataset of about 100 time series). This approach leads to memorization [192], which

defeats the purpose of training a model. A third approach assumes an auxiliary raw data

time series as an additional input during the generation phase to help generate long time

series [188]. This again defeats the purpose of synthetic data generation.

Our approach. To reduce the number of RNN passes, we propose to use a simple yet

effective idea called batch generation. At each pass of the RNN, instead of generating one

record (e.g., page views of one day), it generates S records (e.g., page views of S consecutive

days), where S is a tunable parameter (Fig. 5.2 (b)).2 This effectively reduces the total

number of RNN passes by a factor of S. As S gets larger, the difficulty of synthesizing

a batch of records at a single RNN pass also increases. This induces a natural tradeoff

between the number of RNN passes and the single pass difficulty. For example, Fig. 5.3

shows the mean square error between the autocorrelation of our generated signals and

real data on the WWT dataset. Even a small (but larger than 1) S gives substantial

improvements in signal quality. In practice, we find that S = 5 works well for many

datasets and a simple autotuning of this hyper-parameter similar to this experiment can

be used in practice (§ 5.1.4).

The above workflow of using RNNs with batch generation ignores the timestamps

from generation. In practice, for some datasets, the timestamps may be important in

addition to timeseries samples; e.g., if derived features such as inter-arrival times of requests

2Our batch generation differs from two similarly-named concepts. Minibatching is a standard practice
of computing gradients on small sets of samples rather than the full dataset for efficiency [193]. Generating
batches of sequences in SeqGAN [77] involves generating multiple time series during GAN training to
estimate the reward of a generator policy in their reinforcement learning framework. Both are orthogonal
to our batch generation.

83

0 100 200 300 400 500−1

0

1
Mode-collapsed

N
or

m
al

iz
ed

p
ag

e
v
ie

w
s

0 100 200 300 400 500−1

0

1
Auto-normalized

N
or

m
al

iz
ed

p
ag

e
v
ie

w
s

Figure 5.4: Without auto-normalization, generated samples show telltale signs of mode
collapse as they have similar shapes and amplitudes.

may be important for downstream systems and networking tasks. To this end, we support

two simple alternatives. First, if the raw timestamps are not important, we can assume

that they are equally spaced and are the same for all samples (e.g., when the dataset is

daily page views of websites). Second, if the derived temporal properties are critical, we

can simply use the initial timestamp of each sample as an additional metadata (i.e., start

time of the sample) and the inter-arrival times between consecutive records as an additional

measurement.

Tackling Mode Collapse

Mode collapse is a well-known problem [44], where the GAN outputs homogeneous samples

despite being trained on a diverse dataset. For example, suppose we train on web traffic

data that includes three distinct kinds of signals, corresponding to different classes of users.

A mode-collapsed GAN might learn to generate only one of those traffic types.

For instance, Fig. 5.4 (top) plots synthetic time series from a GAN trained on the

WWT dataset, normalized and shifted to [−1, 1]. The generated samples are heavily mode-

collapsed, exhibiting similar amplitudes, offsets, and shapes.3

Existing work and limitations. Alleviating mode collapse is an active research topic

3While mode collapse can happen both in measurements or in metadata, we observed substantially more
mode collapse in the measurements.

84

in the GAN community (e.g., [46, 166, 103, 104]). We experimented with a number of

state-of-the-art techniques for mitigating mode collapse [166, 104]. However, these did not

resolve the problem on our datasets.

Our approach. Our intuition is that unlike images or medical data, where value ranges

tend to be similar across samples, networking datasets exhibit much higher range variabil-

ity. Datasets with a large range (across samples) appear to worsen mode collapse because

they have a more diverse set of modes, making them harder to learn. For example, in

the WWT dataset, some web pages consistently have >2000 page views per day, whereas

others always have <10.

Rather than using a general solution for mode collapse, we build on this insight to de-

velop a custom auto-normalization heuristic. Recall that each time series of measurements

f i (e.g., network traffic volume measurement of a client) is also assigned some metadata

Ai (e.g., the connection technology of the client, cable/fiber). Suppose our dataset has two

time series with different offsets: f1(t) = sin(t) and f2(t) = sin(t) + 100 and no metadata,

so A1 = A2 = (). We have min(f1) = −1, max(f1) = 2, min(f2) = 99, max(f2) = 101. A

standard normalization approach (e.g. as in [187]) would be to simply normalize this data

by the global min and max, store them as global constants, and train on the normalized

data. However, this is just scaling and shifting by a constant; from the GAN’s perspective,

the learning problem is the same, so mode collapse still occurs.

Instead, we normalize each time series signal individually, and store the min/max as

“fake” metadata. Rather than training on the original (f i, Ai) pairs, we train on f̃1(t) =

sin(t), Ã1 = (−1, 1), f̃2(t) = sin(t), Ã2 = (99, 101).4 Hence, the GAN learns to generate

these two fake metadata defining the max/min for each time series individually, which are

then used to rescale measurements to a realistic range.

Note that this approach differs from typical feature normalization in two ways: (1) it

normalizes each sample individually, rather than normalizing over the entire dataset, and

(2) it treats the maximum and minimum value of each time series as a random variable

to be learned (and generated). In this way, all time series have the same range during

generation, which alleviates the mode collapse problem. Fig. 5.4 (bottom) shows that by

training distributional privacy with auto-normalization on the WWT data, we generate

samples with a broad range of amplitudes, offsets, and shapes.

4In reality, we store Ãi = (max{f i} ±min{f i})/2 to ensure that our generated min is always less than
our max.

85

Capturing attribute relationships

So far, we have only discussed how to generate time series. However, metadata can strongly

influence the characteristics of measurements. For example, fiber users tend to use more

traffic than cable users. Hence, we need a mechanism to model the joint distribution

between measurements and metadata. As discussed in § 5.1.3, naively generating concate-

nated metadata Ai and measurements Ri does not learn the correlations between them

well. We hypothesize that this is because jointly generating metadata and measurements

using a single generator is too difficult.

Existing work and limitations. A few papers have tackled this problem, mostly in the

context of generating multi-dimensional data. The dominant approach in the literature is

to train a variant of GANs called conditional GANs (CGANs), which learn to produce data

conditioned on a user-provided input label. For example, prior works [8, 194, 188] learn

a conditional model in which the user inputs the desired metadata, and the architecture

generates measurements conditioned on the attributes; generating the attributes as well

is a simple extension [8]. TimeGAN claims to co-generate metadata and measurements,

but it does not evaluate on any datasets that include metadata in the paper, nor does the

released code handle metadata [186, 187].

Our Approach. We start by decoupling this problem into two sub-tasks: generating

metadata and generating measurements conditioned on metadata: P (Ai, Ri) = P (Ai) ·
P (Ri|Ai), each using a dedicated generator; this is is conceptually similar to prior ap-

proaches [8, 188]. More specifically, we use a standard multi-layer perceptron (MLP)

network for generating the metadata. This is a good choice, as MLPs are good at mod-

eling (even high-dimensional) non-time-series data. For measurement generation, we use

the RNN-based architecture from § 5.1.4. To preserve the hidden relationships between

the metadata and the measurements, the generated metadata Ai is added as an input to

the RNN at every step.

Recall from § 5.1.4 that we treat the max and min of each time series as metadata

to alleviate mode collapse. Using this conditional framework, we divide the generation of

max/min metadata into three steps: (1) generate “real” metadata using the MLP generator

(§ 5.1.4); (2) with the generated metadata as inputs, generate the two “fake” (max/min)

metadata using another MLP; (3) with the generated real and fake metadata as inputs,

generate measurements using the architecture in § 5.1.4 (see Fig. 5.6).

Unfortunately, a decoupled architecture alone does not solve the problem. Empir-

86

ically, we find that when the average length of measurements is long (e.g., in the WWT

dataset, each sample consists of 550 consecutive daily page views), the fidelity of generated

data—especially the metadata—is poor. To understand why, recall that a GAN discrim-

inator judges the fidelity of generated samples and provides feedback for the generator

to improve. When the total dimension of samples (measurements + metadata) is large,

judging sample fidelity is hard.

Motivated by this, we introduce an auxiliary discriminator which discriminates only

on metadata. The losses from two discriminators are combined by a weighting parameter

α: minG maxD1,D2 L1(G,D1) + αL2(G,D2) where Li, i ∈ {1, 2} is the Wasserstein loss of

the original and the auxiliary discriminator respectively. The generator effectively learns

from this auxiliary discriminator to generate high-fidelity metadata. Further, with the help

of the original discriminator, the generator can learn to generate measurements well.

Empirically, we find that this architecture improves the data fidelity significantly.

Fig. 5.5 shows a histogram of the (max+min)/2 metadata distribution from distributional

privacy on the WWT dataset. That is, for each time series, we extract the maximum

and minimum value, and compute their average; then we compute a histogram of these

averages over many time series. This distribution implicitly reflects how well distributional

privacy reproduces the range of time series values in the dataset. We observe that adding

the auxiliary discriminator significantly improves the fidelity of the generated distribution,

particularly in the tails of the true distribution.

Putting it all together

The overall distributional privacy architecture is in Fig. 5.6, highlighting the key differ-

ences from canonical approaches. First, to capture the correlations between metadata and

measurements, we use a decoupled generation of metadata and measurements using an

auxiliary discriminator, and conditioning the measurements based on the metadata gen-

erated. Second, to address the mode collapse problem for the measurements, we add the

fake metadata capturing the min/max values for each generated sample. Third, we use

a batched RNN generator to capture the temporal correlations and synthesize long time

series that are representative.

The training phase requires two primary inputs: the data schema (i.e., metadata

and measurement dimensions, indicating whether they are categorical or numeric) and the

training data. The only minimal tuning that data holders sharing a dataset using distri-

87

−1.0 −0.5 0.0 0.5 1.00

1000

2000

3000 Real
DoppelGANger

−1.0 −0.5 0.0 0.5 1.00

1000

2000 Real
DoppelGANger

−1.0 −0.5 0.0 0.5 1.00

2000

4000

6000 Real
TimeGAN

−1.0 −0.5 0.0 0.5 1.00

20000

40000 Real
TimeGAN

Figure 5.5: Distribution of (max+min)/2 of (a) DG without and (b) DG with the auxiliary
discriminator, (c) TimeGAN, and (d) RCGAN (WWT data).

butional privacy need to be involved in is selecting the measurement batch size S (§ 5.1.4)

controls the number of measurements generated at each RNN pass. Empirically, setting

S so that T/S (the number of steps RNN needs to take) is around 50 gives good results,

whereas prior time series GANs use S = 1 [8, 195, 186, 188]. Optionally, data holders

can specify sensitive metadata, whose distribution can be masked or request additional

privacy settings to be used. We envision data holders sharing the generative model with

the data users. Users can then flexibly use this model and also optionally specify different

metadata distribution (e.g., for amplifying rare events) if needed. That said, our workflow

also accommodates a more restrictive mode of sharing, where the holder uses distributional

privacy to generate synthetic data internally and then releases the generated data without

88

RNN

Noise

Metadata
Generator

(MLP)

(A1, …, Am)

Noise

Min/Max
Generator

(MLP)

(min±max)/2

Auxiliary
Discriminator Discriminator

R1,…,RS

RNN

Noise

RT-s+1,…,RT

…

…

Decoupling attributes +
conditioned generation to
capture relationships (4.3)

Normalization to tackle
mode collapse (4.2)

RNN with batched generation
for capturing temporal correlation (4.1)

Auxiliary discriminator
to improve fidelity
(4.3)

Combined
Discriminator

× 1×α
Real

Fake

(float)

Noise

Figure 5.6: Architecture of distributional privacy highlighting key ideas and extensions to
canonical GAN approaches.

sharing the model.5

The code and a detailed documentation (on data format, hyper-parameter setting,

model training, data generation, etc.) are available at https://github.com/fjxmlzn/

DoppelGANger.

5.2 Unified Library for Future Applications

To make it easier for anyone to use the proposed techniques in this dissertation in future

applications, we package the algorithms (DoppelGANger for time series data in § 5.1,

PacGAN for improving sample diversity in § 3.2, BSSN for stabilizing training in § 3.3)

and DP-SGD training in § 4.2 into a single package. The package supports several data

5From a privacy perspective, model and data sharing may suffer similar information leakage risks [146],
but this may be a pragmatic choice some providers can make nonetheless.

89

https://github.com/fjxmlzn/DoppelGANger
https://github.com/fjxmlzn/DoppelGANger

Dataset
Correlated in
time & metadata

Multi-dimensional mea-
surements

Variable-length
signals

WWT [160] x

MBA [170] x x

GCT [169] x x x

Table 5.1: Challenging properties of studied datasets.

formats (e.g., CSV, XLS). Additionally, the library is designed to be modular, allowing

for easy extension to new data types and the creation of new data sharing algorithms

on top of it. Please refer to the documentation for more details: https://github.com/

netsharecmu/NetShare.

5.3 Case Studies

In this section, we demonstrate the effectiveness of our system at preserving sample fidelity

in concrete applications in systems and networking domains as case studies.

5.3.1 Setup

Datasets

These datasets are chosen to exhibit different combinations of challenges: (1) correlations

within time series and metadata, (2) multi-dimensional measurements, and/or (3) variable

measurement lengths.

Wikipedia Web Traffic Dataset (WWT). This dataset tracks the number of daily

views of Wikipedia articles, starting from July 1st, 2015 to December 31st, 2016 [160].

In our language, each sample is a page view counter for one Wikipedia page, with three

metadata: Wikipedia domain, type of access (e.g., mobile, desktop), and type of agent

(e.g., spider). Each sample has one measurement: the number of daily page views.

Measuring Broadband America Dataset (MBA). This dataset was collected by

United States Federal Communications Commission (FCC) [170] and consists of several

measurements such as round-trip times and packet loss rates from several clients in geo-

graphically diverse homes to different servers using different protocols (e.g. DNS, HTTP,

PING). Each sample consists of measurements from one device. Each sample has three

metadata: Internet connection technology, ISP, and US state. A record contains UDP

90

https://github.com/netsharecmu/NetShare
https://github.com/netsharecmu/NetShare

ping loss rate (min. across measured servers) and total traffic (bytes sent and received),

reflecting client’s aggregate Internet usage.

Google Cluster Trace Dataset (GCT). This dataset [169] contains usage traces of a

Google Cluster of 12.5k machines over 29 days in May 2011. We use the logs containing

measurements of task resource usage, and the exit code of each task. Once the task starts,

the system measures its resource usage (e.g. CPU usage, memory usage) per second, and

logs aggregated statistics every 5 minutes (e.g., mean, maximum). Those resource usage

values are the measurements. When the task ends, its end event type (e.g. FAIL, FINISH,

KILL) is also logged. Each task has one end event type, which we treat as an metadata.

Baselines

We compare DoppelGANger with the following popular algorithms for time series data.

Hidden Markov models (HMM). While HMMs have been used for generating time

series data, there is no natural way to jointly generate metadata and time series in HMMs.

Hence, we infer a separate multinomial distribution for the metadata. During genera-

tion, metadata are randomly drawn from the multinomial distribution on training data,

independently of the time series.

Nonlinear auto-regressive (AR). Traditional AR models can only learn to generate

measurements. In order to jointly learn to generate metadata and measurements, we

design the following more advanced version of AR: we learn a function f such that Rt =

f(A,Rt−1, Rt−2, ..., Rt−p). To boost the accuracy of this baseline, we use a multi-layer

perceptron version of f . During generation, A is randomly drawn from the multinomial

distribution on training data, and the first record R1 is drawn a Gaussian distribution

learned from training data.

Recurrent neural networks (RNN). In this model, we train an RNN via teacher

forcing [196] by feeding in the true time series at every time step and predicting the value

of the time series at the next time step. Once trained, the RNN can be used to generate

the time series by using its predicted output as the input for the next time step. A

traditional RNN can only learn to generate measurements. We design an extended RNN

takes metadata A as an additional input. During generation, A is randomly drawn from

the multinomial distribution on training data, and the first record R1 is drawn a Gaussian

distribution learned from training data.

Naive GAN. We include the naive GAN architecture (MLP generator and discriminator)

91

in all our evaluations.

TimeGAN. Note that the state-of-the-art TimeGAN [187] does not jointly generate

metadata and high-dimensional time series of different lengths, so several of our evaluations

cannot be run on TimeGAN. However, we modified the TimeGAN implementation directly

[187] to run on the WWT dataset (without metadata) and compared against it.

RCGAN [8]. RCGAN does not generate metadata, and only deals with time series of

the same length, so again, several of our evaluations cannot be run on RCGAN. To make a

comparison, we used the version without conditioning (called RGAN [8]) from the official

implementation [197] and evaluate it on the WWT dataset (without metadata).

Market Simulator [198]. We also compare against a VAE-based approach [198] designed

to generate synthetic financial market data, since its code is publicly available.

Metrics

Evaluating GAN fidelity is notoriously difficult [199, 200]; the most widely-accepted met-

rics are designed for labelled image data [115, 201] and cannot be applied to our datasets.

Moreover, numeric metrics do not always capture the qualitative problems of generative

models. We therefore evaluate DG with a combination of qualitative and quantitative

microbenchmarks and downstream tasks that are tailored to each of our datasets. Our mi-

crobenchmarks evaluate how closely a statistic of the generated data matches the real data.

E.g., the statistics could be attribute distributions or autocorrelations, and the similarity

can be evaluated qualitatively or by computing an appropriate distance metric (e.g., mean

square error, Jensen-Shannon divergence). Our downstream tasks use the synthetic data to

reason about the real data, e.g., attribute prediction or algorithm comparison. In line with

the recommendations of [199], these tasks can be evaluated with quantitative, task-specific

metrics like prediction accuracy. Each metric is explained in more detail inline.

5.3.2 Results

Structural characterization. In line with prior recommendations [33], we explore how

DG captures structural data properties like temporal correlations, metadata distributions,

and metadata-measurement joint distributions.6

6Such properties are sometimes ignored in the ML literature in favor of downstream performance metrics;
however, in systems and networking, we argue such microbenchmarks are important.

92

−1.0 −0.5 0.0 0.5 1.0
Pearson correlation

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

DoppelGANger

Real

Real
DoppelGANger
RNN
AR
HMM
Naive GAN

Figure 5.7: CDF of Pearson correlation between CPU rate and assigned memory usage
from GCT.

Temporal correlations: To show how DG captures temporal correlations, Fig. 5.1 shows the

average autocorrelation for the WWT dataset for real and synthetic datasets (discussed

in §5.1.3). As mentioned before, the real data has a short-term weekly correlation and

a long-term annual correlation. DG captures both, as evidenced by the periodic weekly

spikes and the local peak at roughly the 1-year mark, unlike our baseline approaches. It

also exhibits a 91.2% lower mean square error from the true data autocorrelation than the

closest baseline (RCGAN).

The fact that DG captures these correlations is surprising, particularly since we are

using an RNN generator. Typically, RNNs are able to reliably generate time series of length

around 20, while the length of WWT measurements is 550. We believe this is due to a

combination of adversarial training (not typically used for RNNs) and our batch generation.

Empirically, eliminating either feature hurts the learned autocorrelation. TimeGAN and

RCGAN, for instance, use RNNs and adversarial training but does not batch generation,

though its performance may be due to other architectural differences [186, 8]. E.g., WWT

is an order of magnitude longer than the time series it evaluates on [187, 197].

Another aspect of learning temporal correlations is generating time series of the

right length. Fig. 5.8 shows the duration of tasks in the GCT dataset for real and synthetic

datasets generated by DG and RNN. Note that TimeGAN generates time series of different

93

0 10 20 30 40 500

5000

10000
Real
DoppelGANger

0 10 20 30 40 500

5000

10000

15000 Real
RNN

Task duration (seconds)

C
o
u

n
t

Figure 5.8: Histogram of task duration for the Google Cluster Trace Dataset. RNN-
generated data misses the second mode, but DoppelGANger captures it.

lengths by first generating time series of a maximum length and then truncating according

to the empirical length distribution from the training data [187]. Hence we do not compare

against TimeGAN because the comparison is not meaningful; it perfectly reproduces the

empirical length distribution, but not because the generator is learning to reproduce time

series lengths.

DG’s length distribution fits the real data well, capturing the bimodal pattern in

real data, whereas RNN fails. Other baselines are even worse at capturing the length

distribution. We observe this regularly; while DG captures multiple data modes, our

baselines tend to capture one at best. This may be due to the naive randomness in the

other baselines. RNNs and AR models incorporate too little randomness, causing them to

learn simplified duration distributions; HMMs instead are too random: they maintain too

little state to generate meaningful results.

Cross-measurement correlation: To evaluate correlations between the dimensions of our

measurements, we computed the Pearson correlation between the CPU and memory mea-

surements of generated samples from the GCT dataset. Figure 5.7 shows the CDF of these

correlation coefficients for different time series. We observe that DG much more closely

mirrors the true auto-correlation coefficient distribution than any of our baselines.

Measurement distribution: As discussed in § 5.1.4 and Fig. 5.6, DG captures the distribu-

tion of (max+min)/2 of page views in WWT dataset. As a comparison, TimeGAN and

94

EVICT FAIL FINISH KILL0

10000

20000 Real
DoppelGANger

EVICT FAIL FINISH KILL0

10000

20000
Real
Naive GAN

End Event Type

C
ou

n
t

Figure 5.9: Histograms of end event types from GCT.

RCGAN have much worse fidelity. TimeGAN captures the two modes in the distribution,

but fails to capture the tails. RCGAN does not learn the distribution at all. In fact, we find

that RCGAN has severe mode collapse in this dataset: all the generated values are close

to -1. Some possible reasons might be: (1) The maximum sequence length experimented

in RCGAN is 30 [197], whereas the sequence length in WWT is 550, which is much more

difficult; (2) RCGAN used different numbers of generator and discriminator updates per

step in different datasets [197]. We directly take the hyper-parameters from the longest se-

quence length experiment in RCGAN’s code [197], but other fine-tuned hyper-parameters

might give better results. Note that unlike RCGAN, DG is able to achieve good results in

our experiments without tuning the numbers of generator and discriminator updates.

Metadata distribution: Learning correct metadata distributions is necessary for learning

measurement-metadata correlations. As mentioned in §5.3.1, for our HMM, AR, and RNN

baselines, metadata are randomly drawn from the multinomial distribution on training

data because there is no clear way to jointly generate metadata and measurements. Hence,

they trivially learn a perfect metadata distribution. Fig. 5.9 shows that DG is also able

to mimic the real distribution of end event type distribution in GCT dataset, while naive

GANs miss a category entirely; this appears to be due to mode collapse, which we mitigate

with our second discriminator.

Measurement-metadata correlations: Although our HMM, AR, and RNN baselines learn

perfect metadata distributions, it is substantially more challenging (and important) to

95

DoppelGANger AR RNN HMM Naive GAN

DSL 0.68 1.34 2.33 3.46 1.14
Cable 0.74 6.57 2.46 7.98 0.87

Table 5.2: Wasserstein-1 distance of total bandwidth distribution of DSL and cable users.
Lower is better.

learn the joint metadata-measurement distribution. To illustrate this, we compute the

CDF of total bandwidth for DSL and cable users in MBA dataset. Table 5.2 shows the

Wasserstein-1 distance between the generated CDFs and the ground truth,7 showing that

DG is closest to the real distribution.

DG does not overfit: In the context of GANs, overfitting is equivalent to memorizing the

training data, which is a common concern with GANs [192, 202]. To evaluate this, we ran

an experiment inspired by the methodology of [192]: for a given generated DG sample, we

find its nearest samples in the training data. We observe significant differences (both in

square error and qualitatively) between the generated samples and the nearest neighbors

on all datasets, suggesting that DG is not memorizing.

Resource costs: DG has two main costs: training data and training time/computation.

In Fig. 5.10, we plot the mean square error (MSE) between the generated samples’ au-

tocorrelations and the real data’s autocorrelations on the WWT dataset as a function of

training set size. MSE is sensitive to training set size—it decreases by 60% as the training

data grows by 2 orders of magnitude. However, Table 5.3 shows that DG trained on 500

data points (the size that gives DG the worst performance) still outperforms all baselines

trained on 50,000 samples in autocorrelation MSE. Fig. 5.10 also illustrates variability

between models; due to GAN training instability, different GAN models with the same

hyperaparameters can have different fidelity metrics. Such training failures can typically

be detected early in the training proccess.

With regards to training time, Table 5.4 lists the training time for DG and other

baselines. All models were trained on a single NVIDIA Tesla V100 GPU with 16GB GPU

memory and an Intel Xeon Gold 6148 CPU with 24GB RAM. These implementations have

not been optimized for performance at all, but we find that on the WWT dataset, DG

requires 17 hours on average to train, which is 3.4× slower than the fastest benchmark

(Naive GAN) and 15.2× faster than the slowest benchmark (TimeGAN).

7Wasserstein-1 distance is the integrated absolute error between 2 CDFs.

96

103 104

#Training samples

0.0000

0.0025

0.0050

0.0075

M
ea

n
sq

ua
re

 e
rro

r

Figure 5.10: Mean square error of autocorrelation of the daily page views v.s. number
of training samples for WWT dataset. For each training set size, 5 independent runs are
executed and their MSE are plotted in the figure. The line connects the median MSE of
the 5 independent runs.

Real Data Generated Data

A

A’

B

B’

Generative
Model
e.g. GAN

50%

50%

50%

50%

Figure 5.11: Predictive modeling setup: Using training data A, we generate samples B∪B′.
Subsequent experiments train downstream tasks on A or B, our training sets, and then
test on A′ or B′.

Predictive modeling. Given time series measurements, users may want to predict

whether an event E occurs in the future, or even forecast the time series itself. For example,

in GCT dataset, we could predict whether a particular job will complete successfully. In

this use case, we want to show that models trained on generated data generalize to real

data.

We first partition our dataset, as shown in Fig. 5.11. We split real data into two sets

of equal size: a training set A and a test set A’. We then train a generative model (e.g., DG

or a baseline) on training set A. We generate datasets B and B’ for training and testing.

Finally, we evaluate event prediction algorithms by training a predictor on A and/or B,

and testing on A’ and/or B’. This allows us to compare the generalization abilities of

the prediction algorithms both within a class of data (real/generated), and generalization

across classes (train on generated, test on real) [8].

We first predict the task end event type on GCT data (e.g., EVICT, KILL) from time

97

Method MSE

RNN 0.1222
AR 0.2777
HMM 0.6030
Naive GAN 0.0190
TimeGAN 0.2384
RCGAN 0.0103
MarketSimulator 0.0324

DoppelGANger 0.0009
DoppelGANger (500 training samples) 0.0024

Table 5.3: Mean square error (MSE) of autocorrelation of the daily page views for WWT
dataset (i.e. quantitative presentation of Fig. 5.1). Each model is trained with multiple
independent runs, and the median MSE among the runs is presented. Except the last row,
all models are trained with 50000 training samples.

MLP
NaiveBayes

LogisticRegression
DecisionTree

LinearSVM
0.0

0.2

0.4

0.6

0.8 Real
DoppelGANger
RNN
AR
HMM
Naive GAN

A
cc

u
ra

cy

Figure 5.12: Event-type prediction accuracy on GCT.

series observations. Such a predictor may be useful for cluster resource allocators. This

prediction task reflects the correlation between the time series and underlying metadata

(namely, end event type). For the predictor, we trained various algorithms to demonstrate

the generality of our results: multilayer perceptron (MLP), Naive Bayes, logistic regression,

decision trees, and a linear SVM. Fig. 5.12 shows the test accuracy of each predictor when

trained on generated data and tested on real. Real data expectedly has the highest test

accuracy. However, we find that DG performs better than other baselines for all five

classifiers. For instance, on the MLP predictive model, DG-generated data has 43% higher

accuracy than the next-best baseline (AR), and 80% of the real data accuracy. The results

on other datasets are similar.

98

Method Average training time (hrs)

Naive GAN 5
Market Simulator 6
HMM 8
RNN 22
RCGAN 29
AR 93
TimeGAN 258

DoppelGANger 17

Table 5.4: Average training time (hours) of synthetic data models on the WWT dataset.
All models are trained with 50000 training samples.

Algorithm comparison. We evaluate whether algorithm rankings are preserved on

generated data on the GCT dataset by training different classifiers (MLP, SVM, Naive

Bayes, decision tree, and logistic regression) to do end event type classification. We also

evaluate this on the WWT dataset by training different regression models (MLP, linear

regression, and Kernel regression) to do time series forecasting. For this use case, users

have only generated data, so we want the ordering (accuracy) of algorithms on real data

to be preserved when we train and test them on generated data. In other words, for

each class of generated data, we train each of the predictive models on B and test on

B′. This is different from Fig. 5.12, where we trained on generated data (B) and tested

on real data (A′). We compare this ranking with the ground truth ranking, in which the

predictive models are trained on A and tested on A′. We then compute the Spearman’s rank

correlation coefficient [203], which compares how the ranking in generated data is correlated

with the ground-truth ranking. Table 5.5 shows that DG and AR achieve the best rank

correlations. This result is misleading because AR models exhibit minimal randomness,

so all predictors achieve the same high accuracy; the AR model achieves near-perfect

rank correlation despite producing low-quality samples; this highlights the importance of

considering rank correlation together with other fidelity metrics.

5.3.3 Other Case Studies

DG is being evaluated by several independent users, though DG has not yet been used to

release any datasets to the best of our knowledge. A large public cloud provider (IBM)

has internally validated the fidelity of DG. IBM stores time series data of resource usage

99

DoppelGANger AR RNN HMM Naive GAN

GCT 1.00 1.00 1.00 0.01 0.90
WWT 0.80 0.80 0.20 -0.60 -0.60

Table 5.5: Rank correlation of predication algorithms on GCT and WWT dataset. Higher
is better.

Figure 5.13: Maximum CPU usage.

measurements for different containers used in the cloud’s machine learning service. They

trained DG to generate resource usage measurements, with the container image name as

metadata. Fig. 5.13 shows the learned distribution of containers’ maximum CPU usage (in

percent). We show the maximum because developers usually size containers according to

their peak usage. DG captures this challenging distribution very well, even in the heavy

tail.

5.4 Chapter Summary

In this chapter, we present DoppelGANger, a GAN-based data sharing tool for time series

data. We show that synthetic data generated by DoppelGANger is statistically similar to

the original data in terms of various metrics, such as correlation between fields, temporal

correlations, and length distributions. We also show that downstream algorithms trained

on synthetic data from DoppelGANger maintain good accuracy when applied to real data.

100

In addition, the rankings of these downstream algorithms on the synthetic data are similar

to their rankings on the original data. These mean that the synthetic data from Doppel-

GANger has high utility for tasks such as structural characterization, predictive modeling,

and algorithm evaluation. We also provide a unified library containing the algorithms

proposed in this dissertation, so that they can be used in future applications.

Broader impact. Although in this chapter we primarily use time series data from

networking and systems domains for experimental evaluation, the same techniques can be

applied to time series data in other domains. In fact, several companies have integrated

our algorithms into data sharing products and applications for data in other domains,

including banking transactions and road traffic data [50, 51, 52].

101

Chapter 6

Conclusions and Future Works

6.1 Summary

In this dissertation, we explore how to build a high-fidelity and privacy-preserving data

sharing tool using GANs. We investigate the theoretical foundations of the fidelity and

privacy problems in GANs, and we propose general algorithms for improving GANs in

these areas. Based on the insights, we build a data sharing tool for time series data as

a case study. All the algorithmic innovations in this dissertation are included in a public

library [6]. Our work has already been adopted by several companies in their data sharing

products [50, 51, 52]. We hope that our efforts will lower the barrier to data sharing and

help to fully realize the potential of data in our world.

Excluded work. In addition to the work discussed in this dissertation [166, 204, 205,

206, 12], I also worked related topics during my Ph.D. These include the following:

• Fidelity foundations. We explore how to make GANs’ latent space disentangled [207]

and how to improve GANs fidelity on rare classes [208], fat-tailed distributions [209],

and data with noise [210].

• Applications. We study the applications of using GANs for security analysis in

systems and networks [211, 208] and for sharing network packets and network flows

[6].

6.2 Future Work

In addition to the previously-mentioned future work for each component of the dissertation

(§ 3.2.4, 3.3.4, 4.2.4 and 4.3.6), we would also like to explore the following open questions.

New use cases enabled by the dissertation. Our work in this dissertation is an enabler

for new technology innovations that would not be possible otherwise. For example, network

vendors can use our tool to obtain internal network traffic from customers for privacy-

preserving troubleshooting. Additionally, companies can utilize our tool to compress and

102

securely save their data as a trained GAN model. Our tool can also be used by various

parties to collaboratively share data for developing and debugging models. We are actively

exploring these potential use cases.

Other requirements for data sharing. In this dissertation, we focus on the two main

requirements for data sharing: high-fidelity and privacy-preserving. In practice, there are

many other requirements for data sharing. One direction of interest is to enable “what-if”

analysis, in which practitioners can model changes in the underlying system and generate

associated data. Although our DG makes some types of what-if analysis easy (e.g., slightly

altering the attribute distribution), larger changes may alter the physical system model in

ways that invalidate the conditional distributions learned by distributional privacy (e.g.,

imagine simulating a high-traffic regime with a model trained only on low-traffic-regime

data). Such what-if analysis is likely to require physical system modeling or simulation,

while GANs may be able to help model individual agent behavior. Another direction is

to model the dependencies and correlations between different samples (i.e., xi in § 2.2).

For example, a router failure may result in high delays for all packets that go through it.

GANs treat all samples independently, so they are not able to capture such correlations by

themselves. To enable the learning of such correlations, a fundamentally different technique

may be needed.

Other generative models. In this dissertation, we focus on the use of GANs, which

were one of the most promising generative models at the early years of my Ph.D. Since

then, other promising generative models and architectures have emerged. For example,

diffusion models [72, 73, 74] (§ 2.2)) have outperformed GANs on sample fidelity across

a wide range of datasets, while being more diverse and more stable to train. Another

example is transformers [212], which have good performance on modeling long sequences

of data such as text. These models provide new opportunities for building even better data

sharing tools in terms of fidelity.

A new generative model tailored to data sharing. The methodology taken in the

dissertation is to take an existing generative model, fix its problems, and then modify it

to fit the requirements of data sharing. Since these generative models were not originally

designed for data sharing applications, this may not be the most “efficient” way to reach our

goals. A more interesting and exciting direction would be to design a new generative model

scratch that is tailored data sharing applications. This would allow us to incorporate the

specific requirements of data sharing (e.g., fidelity, privacy, what-if analysis, correlations

between samples) into the design of the model itself.

103

Appendix A

Proofs from Chapter 3

In this chapter, we give the proofs for Chapter 3.

A.1 Proofs from § 3.2

In this section, we showcase how the region interpretation provides a new proof technique

that is simple and tight. This transforms the measure-theoretic problem into a geometric

one in a simple 2D compact plane, facilitating the proof of otherwise-challenging results.

A.1.1 Additional Theoretical Analysis

Evolution of total variation distances

In order to generalize the intuition from the above toy examples, we first analyze how the

total variation evolves for the set of all pairs (P,Q) that have the same total variation

distance τ when unpacked (i.e., when m = 1). The solutions to the following optimization

problems give the desired upper and lower bounds, respectively, on total variation distance

for any distribution pair in this set with a packing degree of m:

min
P,Q

dTV(Pm, Qm) max
P,Q

dTV(Pm, Qm) (A.1)

subject to dTV(P,Q) = τ subject to dTV(P,Q) = τ ,

where the maximization and minimization are over all probability measures P and Q. We

give the exact solution in Theorem A.1.1.1, which is illustrated pictorially in Fig. 3.6 (left).

Theorem A.1.1.1. For all 0 ≤ τ ≤ 1 and a positive integer m, the solution to the

maximization in Eq. (A.1) is 1−(1−τ)m, and the solution to the minimization in Eq. (A.1)

is

L(τ,m) ≜ min
0≤α≤1−τ

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (A.2)

104

where Pinner(α)m and Qinner(α, τ)m are the m-th order product distributions of binary ran-

dom variables distributed as

Pinner(α) =
[
1− α, α

]
, (A.3)

Qinner(α, τ) =
[
1− α− τ, α + τ

]
. (A.4)

Although this is a simple statement that can be proved in several different ways, we

introduce in Appendix A.1.2 a novel geometric proof technique that critically relies on the

proposed mode collapse region. This particular technique will allow us to generalize the

proof to more complex problems involving mode collapse in Theorem 3.2.1.1, for which

other techniques do not generalize. Note that the claim in Theorem A.1.1.1 has nothing

to do with mode collapse. Still, the mode collapse region definition (used here purely as

a proof technique) provides a novel technique that seamlessly generalizes to prove more

complex statements in the following.

For any given value of τ and m, the bounds in Theorem A.1.1.1 are easy to evaluate

numerically, as shown below in the left panel of Fig. 3.6. Within this achievable range,

some subset of pairs (P,Q) have rapidly increasing total variation, occupying the upper

part of the region (shown in red, middle panel of Fig. 3.6), and some subset of pairs (P,Q)

have slowly increasing total variation, occupying the lower part as shown in blue in the

right panel in Fig. 3.6. In particular, the evolution of the mode-collapse region of a pair of

m-th power distributions R(Pm, Qm) is fundamentally connected to the strength of mode

collapse in the original pair (P,Q). This means that for a mode-collapsed pair (P,Q1),

the mth-power distribution will exhibit a different total variation distance evolution than a

non-mode-collapsed pair (P,Q2). As such, these two pairs can be distinguished by a packed

discriminator. Making such a claim precise for a broad class of mode-collapsing and non-

mode-collapsing generators is challenging, as it depends on the target P and the generator

Q, each of which can be a complex high dimensional distribution, like natural images. The

proposed region interpretation, endowed with the hypothesis testing interpretation and

the data processing inequalities that come with it, is critical: it enables the abstraction of

technical details and provides a simple and tight proof based on geometric techniques on

two-dimensional regions.

105

Evolution of total variation distances without mode collapse

For the optimization in Eq. (3.6), it is not possible to have dTV(P,Q) > (δ − ε)/(δ + ε)

and δ + ε ≤ 1, and satisfy the mode collapse and mode augmentation constraints (see

Appendix A.1.4 for a proof). Similarly, it is not possible to have dTV(P,Q) > (δ− ε)/(2−
δ − ε) and δ + ε ≥ 1, and satisfy the constraints. Hence, the feasible set is empty when

τ > max{(δ− ε)/(δ + ε), (δ− ε)/(2− δ− ε)}. On the other hand, when τ ≤ δ− ε, no pairs

with total variation distance τ can have (ε, δ)-mode collapse. In this case, the optimization

reduces to the simpler one in Eq. (A.1) with no mode collapse constraints. Non-trivial

solution exists in the middle regime, i.e. δ−ε ≤ τ ≤ max{(δ−ε)/(δ+ε), (δ−ε)/(2−δ−ε)}.
The lower bound for this regime, given in equation Eq. (A.8), is the same as the lower

bound in Theorem A.1.1.1, except it optimizes over a different range of α values. For a

wide range of parameters ε, δ, and τ , those lower bounds will be the same, and even if

they differ for some parameters, they differ slightly. This implies that the pairs (P,Q) with

weak mode collapse will occupy the bottom part of the evolution of the total variation

distances (see Fig. 3.6 right panel), and also will be penalized less under packing. Hence a

generator minimizing (approximate) dTV(Pm, Qm) is likely to generate distributions with

weak mode collapse.

Theorem A.1.1.2. For all 0 ≤ ε < δ ≤ 1 and a positive integer m, if 0 ≤ τ < δ − ε,

then the maximum and the minimum of Eq. (3.6) are the same as those of the optimization

Eq. (A.1) provided in Theorem A.1.1.1.

If δ + ε ≤ 1 and δ− ε ≤ τ ≤ (δ− ε)/(δ + ε) then the solution to the maximization in

Eq. (3.6) is

U1(ϵ, δ, τ,m) ≜ max
α+β≤1−τ, ετ

δ−ε
≤α,β

dTV

(
Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m

)
,

(A.5)

where Pouter1(ε, δ, α, β, τ)m and Qouter1(ε, δ, α, β, τ)m are the m-th order product distribu-

tions of discrete random variables distributed as

Pouter1(ε, δ, α, β, τ) =
[
α(δ−ε)−ετ

α−ε , α(α+τ−δ)
α−ε , 1− τ − α− β, β, 0

]
, and (A.6)

Qouter1(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−δ)

β−ε , β(δ−ε)−ετ
β−ε

]
. (A.7)

106

The solution to the minimization in Eq. (3.6) is

L2(τ,m) ≜ min
ετ
δ−ε

≤α≤1− δτ
δ−ε

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (A.8)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem A.1.1.1.

If δ+ ε > 1 and δ− ε ≤ τ ≤ (δ− ε)/(2− δ− ε) then the solution to the maximization

in Eq. (3.6) is

U2(ϵ, δ, τ,m) ≜ max
α+β≤1−τ,

(1−δ)τ
δ−ε

≤α,β

dTV

(
Pouter2(ε, δ, α, β, τ)m, Qouter2(ε, δ, α, β, τ)m

)
,

(A.9)

where Pouter2(ε, δ, α, β, τ)m and Qouter2(ε, δ, α, β, τ)m are the m-th order product distribu-

tions of discrete random variables distributed as

Pouter2(ε, δ, α, β, τ) =
[
α(δ−ε)−(1−δ)τ

α−(1−δ) , α(α+τ−(1−ε))
α−(1−δ) , 1− τ − α− β, β, 0

]
, and

(A.10)

Qouter2(ε, δ, α, β, τ) =
[
0, α, 1− τ − α− β, β(β+τ−(1−ε))

β−(1−δ) , β(δ−ε)−(1−δ)τ
β−(1−δ)

]
. (A.11)

The solution to the minimization in Eq. (3.6) is

L3(τ,m) ≜ min
(1−δ)τ
δ−ε

≤α≤1− (1−ε)τ
δ−ε

dTV

(
Pinner(α)m, Qinner(α, τ)m

)
, (A.12)

where Pinner(α) and Qinner(α, τ) are defined as in Theorem A.1.1.1.

If τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2 − δ − ε)}, then the optimization in Eq. (3.6)

has no solution and the feasible set is an empty set.

A proof of this theorem is provided in Appendix A.1.4, which also critically relies on

the proposed mode collapse region representation of the pair (P,Q) and the celebrated re-

sult by Blackwell from [47]. The solutions in Theorem 3.2.1.2 can be numerically evaluated

for any given choices of (ε, δ, τ) as we show in Fig. A.1.

A.1.2 Proof of Theorem A.1.1.1

Note that although the original optimization Eq. (A.1) has nothing to do with mode col-

lapse, we use the mode collapse region to represent the pairs (P,Q) to be optimized over.

107

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

No (ϵ, δ) mode collapse or augmentation

dTV(Pm, Qm)

(ϵ, δ) = (0.03, 0.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

(ϵ, δ) = (0.04, 0.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

(ϵ, δ) = (0.05, 0.1)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

dTV(Pm, Qm)

(ϵ, δ) = (0.06, 0.1)

m
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

(ϵ, δ) = (0.07, 0.1)

m
 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 3 5 7 9 11

(ϵ, δ) = (0.08, 0.1)

m

Figure A.1: The evolution of total variation distance over the packing degree m for pairs
with no mode collapse/augmentation is shown as a blue band, as defined by the optimiza-
tion Eq. (3.6) and computed using Theorem 3.2.1.2. For a fixed dTV(P,Q) = τ = 0.11 and
the lack of (ε, δ = 0.1)-mode collapse/augmentation constraints, we show the evolution
with different choices of ε ∈ {0.03, 0.04, 0.05, 0.06, 0.07, 0.08}. The black solid lines show
the maximum/minimum total variation in the optimization Eq. (A.1) as a reference. The
family of pairs (P,Q) with weaker mode collapse (i.e. larger ε in the constraint), occupies
a smaller region at the bottom with smaller total variation under packing, and hence is
less penalized when training the generator.

This allows us to use simple geometric techniques to enumerate over all possible pairs

(P,Q) that have the same total variation distance τ .

By Remark 3.2.1.2, all pairs (P,Q) that have total variation τ must have a mode

collapse region R(P,Q) that is tangent to the blue line in Fig. A.2. Let us denote a

point where R(P,Q) meets the blue line by the point (1 − α − τ, 1 − α) in the 2D plane,

parametrized by α ∈ [0, 1 − τ]. Then, for any such (P,Q), we can sandwich the region

R(P,Q) between two regions Rinner and Router:

Rinner(α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (A.13)

108

 0

 0.5

 1

 0 0.5 1

↵ ⌧

R(P, Q)
Router(⌧)

Rinner(↵, ⌧)

ε

δ

Figure A.2: For any pair (P,Q) with total variation distance τ , there exists an α such that
the corresponding region R(P,Q) is sandwiched between Rinner(α, τ) and Router(τ).

which are illustrated in Fig. A.3. Now, we wish to understand how these inner and outer

regions evolve under product distributions. This endeavor is complicated by the fact that

there can be infinite pairs of distributions that have the same region R(P,Q). However,

note that if two pairs of distributions have the same region R(P,Q) = R(P ′, Q′), then

their product distributions will also have the same region R(Pm, Qm) = R((P ′)m, (Q′)m).

As such, we can focus on the simplest, canonical pair of distributions, whose support set

has the minimum cardinality over all pairs of distributions with region R(P,Q).

For a given α, we denote the pairs of canonical distributions achieving these exact

inner and outer regions as in Fig. A.3: let (Pinner(α), Qinner(α, τ)) be as defined in Eq. (A.3)

and Eq. (A.4), and let (Pouter(τ), Qouter(τ)) be defined as below. Since the outer region has

three sides (except for the universal 45-degree line), we only need alphabet size of three

to find the canonical probability distributions corresponding to the outer region. By the

same reasoning, the inner region requires only a binary alphabet. Precise probability mass

functions on these discrete alphabets can be found easily from the shape of the regions and

the equivalence to the hypothesis testing region explained in § 3.2.

By the preservation of dominance under product distributions in Remark 3.2.1.5, it

follows from the dominance in Appendix A.1.2 that for any (P,Q) there exists an α such

that

R(Pinner(α)m, Qinner(α, τ)m) ⊆ R(Pm, Qm) ⊆ R(Pouter(τ)m, Qouter(τ)m) . (A.14)

109

 0

 0.5

 1

 0 0.5 1

↵ ⌧
Pinner(·)

Qinner(·)

↵

1� ↵

1� ↵� ⌧

↵ + ⌧ Rinner(↵, ⌧)

ε

δ

 0

 0.5

 1

 0 0.5 1

⌧

1� ⌧

1� ⌧

⌧

⌧

0

0

Router(⌧)
Qouter(·)

Pouter(·)

ε

δ

Figure A.3: Canonical pairs of distributions corresponding to Rinner(α, τ) and Router(τ).

Due to the data processing inequality of mode collapse region in Remark 3.2.1.4, it follows

that dominance of region implies dominance of total variation distances:

min
0≤α≤1−τ

dTV(Pinner(α)m, Qinner(α, τ)m) ≤ dTV(Pm, Qm) ≤ dTV(Pouter(τ)m, Qouter(τ)m) .(A.15)

The RHS and LHS of the above inequalities can be completely characterized by taking the

m-th power of those canonical pairs of distributions. For the upper bound, all mass except

for (1−τ)m is nonzero only on one of the pairs, which gives dTV(Pm
outer, Q

m
outer) = 1−(1−τ)m.

For the lower bound, writing out the total variation gives L(τ,m) in Theorem A.1.1.1. This

finishes the proof of Theorem A.1.1.1.

A.1.3 Proof of Theorem 3.2.1.1

In optimization Eq. (3.1), we consider only those pairs with (ε, δ)-mode collapse. It is

simple to see that the outer bound does not change. We only need a new inner bound. Let

us denote a point where R(P,Q) meets the blue line by the point (1−α−τ, 1−α) in the 2D

plane, parametrized by α ∈ [0, 1− τ]. We consider the case where α < 1− (τδ/(δ− ε)) for

now, and treat the case when α is larger separately, as the analyses are similar but require

a different canonical pair of distributions (P,Q) for the inner bound. The additional

constraint that (P,Q) has (ε, δ)-mode collapse translates into a geometric constraint that

we need to consider all regions R(P,Q) that include the orange solid circle at point (ε, δ).

Then, for any such (P,Q), we can sandwich the region R(P,Q) between two regions Rinner1

110

and Router:

Rinner1(ε, δ, α, τ) ⊆ R(P,Q) ⊆ Router(τ) , (A.16)

 0

 0.5

 1

 0 0.5 1

↵ ⌧

R(P, Q)
Router(⌧)

(", �)

Rinner1(", �,↵, ⌧)

ε

δ

Figure A.4: For any pair (P,Q) with (ε, δ)-mode collapse, the corresponding regionR(P,Q)
is sandwiched between Rinner1(ε, δ, α, τ) and Router(τ).

Let (Pinner1(δ, α), Qinner1(ε, α, τ)) defined in Eq. (3.2) and Eq. (3.3), and (Pouter(τ), Qouter(τ))

defined in Appendix A.1.2 denote the pairs of canonical distributions achieving the inner

and outer regions exactly as shown in Fig. A.5. By the preservation of dominance under

 0

 0.5

 1

 0 0.5 1

�

"

↵
1� ↵� �

↵ + ⌧

1� ↵� ⌧ � "

↵ ⌧

(", �)

Rinner1(", �,↵, ⌧)

Pinner1(·)

Qinner1(·)

ε

δ

 0

 0.5

 1

 0 0.5 1

⌧

1� ⌧

1� ⌧

⌧

⌧

0

0

Router(⌧)Qouter(·)

Pouter(·)

(", �)

ε

δ

Figure A.5: Canonical pairs of distributions corresponding to Rinner(ε, δ, τ, α) and
Router(τ).

product distributions in Remark 3.2.1.5, it follows from the dominance in Appendix A.1.3

111

that for any (P,Q) there exists an α such that

R(Pinner1(δ, α)m, Qinner1(ε, δ, α, τ)m) ⊆ R(Pm, Qm) ⊆ R(Pouter(τ)m, Qouter(τ)m) .(A.17)

Due to the data processing inequality of mode collapse region in Remark 3.2.1.4, it follows

that dominance of region implies dominance of total variation distances:

min
0≤α≤1− τδ

δ−ε

dTV(Pinner1(δ, α)m, Qinner1(ε, δ, α, τ)m) ≤ dTV(Pm, Qm) ≤ dTV(Pouter(τ)m, Qouter(τ)m) .

(A.18)

The RHS and LHS of the above inequalities can be completely characterized by taking the

m-th power of those canonical pairs of distributions. For the upper bound, all mass except

for (1−τ)m is nonzero only on one of the pairs, which gives dTV(Pm
outer, Q

m
outer) = 1−(1−τ)m.

For the lower bound, writing out the total variation gives L1(ε, δ, τ,m) in Theorem 3.2.1.1.

For α > 1−(τδ/(δ−ε)), we need to consider a different class of canonical distributions

for the inner region, shown below. The inner region Rinner2(α, τ) and corresponding canon-

ical distributions Pinner2(α) and Qinner2(α, τ) defined in Eq. (3.4) and Eq. (3.5) are shown

below. We take the smaller one between the total variation distance resulting from these

two cases. Note that α ≤ 1− τ by definition. This finishes the proof of Theorem 3.2.1.1.

 0

 0.5

 1

 0 0.5 1

↵

↵ + ⌧

↵ ⌧
1� ↵

1� ↵� ⌧

Rinner2(↵, ⌧)

Pinner2(·)

Qinner2(·)

(", �)

ε

δ

Figure A.6: When α > 1 − (τδ/(δ − ε)), this shows a canonical pair of distributions
corresponding to Rinner(ε, δ, τ, α) for the mode-collapsing scenario H1(ε, δ, τ).

112

A.1.4 Proof of Theorem 3.2.1.2

When τ < δ − ε, all pairs (P,Q) with dTV(P,Q) = τ cannot have (ε, δ)-mode collapse,

and the optimization of Eq. (3.6) reduces to that of Eq. (A.1) without any mode collapse

constraints.

When δ + ε ≤ 1 and τ > (δ − ε)/(δ + ε), no convex region R(P,Q) can touch the

45-degree line at τ as shown below, and the feasible set is empty. This follows from the

fact that a triangle region passing through both (ε, δ) and (1 − δ, 1 − ε) will have a total

variation distance of (δ − ε)/(δ + ε). Note that no (ε, δ)-mode augmentation constraint

translates into the region not including the point (1 − δ, 1 − ε). We can see easily from

Fig. A.7 that any total variation beyond that will require violating either the no-mode-

collapse constraint or the no-mode-augmentation constraint. Similarly, when δ + ε > 1

and τ > (δ − ε)/(2 − δ − ε), the feasible set is also empty. These two can be unified as

τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}.

 0

 0.5

 1

 0 0.5 1

R(P, Q)

(", �)

(1� �, 1� ")

⌧ =
� � "

� + "
when ε + δ ≤ 1

 0

 0.5

 1

 0 0.5 1

R(P, Q) (", �)

(1� �, 1� ")

⌧ =
� � "

2� � � "
when ε + δ > 1

Figure A.7: When δ + ε ≤ 1 and τ = (δ − ε)/(δ + ε) (i.e. (1− τ)/2 : (1 + τ)/2 = ε : δ), a
triangle mode collapse region that touches both points (ε, δ) and (1− δ, 1− ε) at two of its
edges also touches the 45-degree line with a τ shift at a vertex (left). When δ + ε > 1, the
same happens when τ = (δ − ε)/(2− δ − ε) (i.e. (1− τ)/2 : (1 + τ)/2 = (1− δ) : (1− ε)).
Hence, if τ > max{(δ − ε)/(δ + ε), (δ − ε)/(2− δ − ε)}, then the triangle region that does
not include both orange points cannot touch the blue 45-degree line.

Suppose δ + ε ≤ 1, and consider the intermediate regime when δ − ε ≤ τ ≤ (δ −
ε)/(δ + ε). In optimization Eq. (3.6), we consider only those pairs with no (ε, δ)-mode

collapse or (ε, δ)-mode augmentation. It is simple to see that the inner bound does not

change from optimization in Eq. (A.1). Let us denote a point where R(P,Q) meets the

blue line by the point (1− α′ − τ, 1− α′) in the 2D plane, parametrized by α′ ∈ [0, 1− τ].

113

The R(α′, τ) defined in Fig. A.3 works in this case also. We only need a new outer bound.

We construct an outer bound region, according to the following rule. We fit a hexagon

where one edge is the 45-degree line passing through the origin, one edge is the vertical

axis, one edge is the horizontal line passing through (1, 1), one edge is the 45-degree line

with shift τ shown in blue in Fig. A.8, and the remaining two edges include the two orange

points, respectively, at (ε, δ) and (1− δ, 1− ε). For any R(P,Q) satisfying the constraints

in Eq. (3.6), there exists at least one such hexagon that includes R(P,Q). We parametrize

the hexagon by α and β, where (α, τ + α) denotes the left-most point where the hexagon

meets the blue line, and (1− τ − β, 1− β) denotes the right-most point where the hexagon

meets the blue line.

The additional constraint that (P,Q) has no (ε, δ)-mode collapse or (ε, δ)-mode aug-

mentation translates into a geometric constraint that we need to consider all regions

R(P,Q) that does not include the orange solid circle at point (ε, δ) and (1 − δ, 1 − ε).

Then, for any such (P,Q), we can sandwich the region R(P,Q) between two regions Rinner

and Router1:

Rinner(α
′, τ) ⊆ R(P,Q) ⊆ Routrer1(ε, δ, α, β, τ) , (A.19)

where Rinner(α, τ) is defined as in Fig. A.3.

 0

 0.5

 1

 0 0.5 1

R(P, Q)

↵
�

⌧

(", �)

(1� �, 1� ")

↵0

Rinner(↵
0, ⌧)

Router1(", �,↵,�, ⌧)

ε

δ

 0

 0.5

 1

 0 0.5 1

↵
�

⌧

(", �)

(1� �, 1� ")

Router1(", �,↵,�, ⌧)

↵(� � ")� "⌧

↵� "

↵

↵(↵ + ⌧ � �)

↵� "

1� ⌧ � ↵� �

1� ⌧ � ↵� �

�(� � ")� "⌧

� � "

�

�(� + ⌧ � �)

� � "

Pouter1(·)

Qouter1(·)

ε

δ

Figure A.8: For any pair (P,Q) with no (ε, δ)-mode collapse or no (ε, δ)-mode
augmentation, the corresponding region R(P,Q) is sandwiched between Rinner(α

′, τ)
and Router1(ε, δ, α, β, τ) (left). A canonical pair of distributions corresponding to
Router1(ε, δ, α, β, τ) (middle and right).

114

Let (Pinner(α
′), Qinner(α

′, τ)) defined in Eq. (A.3) and Eq. (A.4), and (Pouter1(ε, δ, α, β, τ), Qouter1(ε, δ, α, β, τ))

denote the pairs of canonical distributions achieving the inner and outer regions exactly as

shown in Fig. A.8.

By the preservation of dominance under product distributions in Remark 3.2.1.5, it

follows from the dominance in Appendix A.1.4 that for any (P,Q) there exist α′, α, and β

such that

R(Pinner(α
′)m, Qinner(α

′, τ)m) ⊆ R(Pm, Qm) ⊆ R(Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m) .

(A.20)

Due to the data processing inequality of mode collapse region in Remark 3.2.1.4, it follows

that dominance of region implies dominance of total variation distances:

min
ετ
δ−ε

≤α′≤1− τδ
δ−ε

dTV(Pinner(α
′)m, Qinner(α

′, τ)m) ≤ dTV(Pm, Qm)

≤ max
α,β≥ ετ

δ−ε
,α+β≤1−τ

dTV(Pouter1(ε, δ, α, β, τ)m, Qouter1(ε, δ, α, β, τ)m) .

(A.21)

The RHS and LHS of the above inequalities can be completely characterized by taking

the m-th power of those canonical pairs of distributions, and then taking the respective

minimum over α′ and maximum over α and β. For the upper bound, this gives U1(ϵ, δ, τ,m)

in Eq. (A.5), and for the lower bound this gives L2(τ,m) in Eq. (A.8).

Now, suppose δ + ε > 1, and consider the intermediate regime when δ − ε ≤ τ ≤
(δ− ε)/(2− δ− ε). We have a different outer bound Router2(ε, δ, α, δ, τ) as the role of (ε, δ)

and (1− δ, 1− ε) have switched. A similar analysis gives

dTV(Pm, Qm) ≤ max
α,β≥ (1−δ)τ

δ−ε
,α+β≤1−τ

dTV(Pouter2(ε, δ, α, β, τ)m, Qouter2(ε, δ, α, β, τ)m) ,

(A.22)

where the canonical distributions are shown in Fig. A.9 and defined in Eq. (A.10) and

Eq. (A.11). This gives U2(ϵ, δ, τ,m) in Eq. (A.9). For the lower bound we only need to

change the range of α we minimize over, which gives L3(τ,m) in Eq. (A.12).

115

 0

 0.5

 1

 0 0.5 1

↵
�

⌧

(", �)

(1� �, 1� ")↵

1� ⌧ � ↵� �

1� ⌧ � ↵� �

�↵(� � ")� (1� �)⌧

↵� (1� �)

↵(↵ + ⌧ � (1� "))

↵� (1� �)

�(� + ⌧ � (1� "))

� � (1� �)
�(� � ")� (1� �)⌧

� � (1� �)

Pouter2(·)

Qouter2(·)
Router2(", �,↵, �, ⌧)

ε

δ

Figure A.9: A canonical pair of distributions corresponding to Router2(ε, δ, α, β, τ).

A.2 Proofs from § 3.3

A.2.1 Additional Theoretical Analysis

Additional Analysis of Gradient

In § 3.3.1, we discuss the gradients with respect to w′
i = wi

uT
i wivi

, where ui, vi are the singular

vectors corresponding to the largest singular values. In this section we discuss the gradients

with respect the actual parameter wi. From Eq. (12) in [43] we know

∇wtDη (x) =
1

∥wt∥sp

(
∇w′

t
Dη (x)−

((
∇otl(x)

Dη (x)
)T

otl (x)

)
· utvTt

)

From Appendix A.2.2, we know that
∥∥∥∇w′

t
Dη (x)

∥∥∥
F
,
∥∥∥∇otl(x)

Dη (x)
∥∥∥, and

∥∥otl (x)
∥∥

have upper bounds. Furthermore,
∥∥utvTt ∥∥F = 1. Therefore,

∥∥∥∥∇w′
t
Dη (x)−

((
∇otl(x)

Dη (x)
)T

otl (x)

)
· utvTt

∥∥∥∥
F

has an upper bound. From Theorem 1.1 in [213] we know that if wt is initialized with

i.i.d random variables from uniform or Gaussian distribution, E
(
∥wt∥sp

)
is lower bounded

away from zero at initialization. So ∥∇wtDη (x)∥F is upper bounded at initialization. More-

over, we observe empirically that ∥wt∥sp is usually increasing during training. Therefore,

∥∇wtDη (x)∥F is typically upper bounded during training as well.

116

A.2.2 Proof of Proposition 3.3.1.1

The proposition makes use of the following observation: For the discriminator defined in

(3.7), the norm of gradient for wt is upper bounded by

∥∇wtDη (x)∥F ≤ ∥x∥ ·
L∏
i=1

∥ai∥Lip ·
L∏
i=1

∥wi∥sp
/
∥wt∥sp for ∀t ∈ [1, L] (A.23)

To prove this, for simplicity of notation, let oia = ai ◦ lwi ◦ . . . ◦ a1 ◦ lw1 , and oil =

lwi ◦ ai−1 ◦ . . . ◦ a1 ◦ lw1 .

It is straightforward to show that the norm of each internal output of discriminator

is bounded by ∥∥ota(x)
∥∥ ≤ ∥x∥ · t∏

i=1

∥ai∥Lip ·
t∏

i=1

∥wi∥sp (A.24)

and ∥∥otl(x)
∥∥ ≤ ∥x∥ · t−1∏

i=1

∥ai∥Lip ·
t∏

i=1

∥wi∥sp . (A.25)

This holds because

∥∥ota(x)
∥∥ =

∥∥ai (otl(x)
)∥∥ ≤ ∥ai∥Lip · ∥∥otl(x)

∥∥
and

∥∥otl(x)
∥∥ =

∥∥lwi

(
ot−1
a (x)

)∥∥ ≤ ∥wt∥sp ·
∥∥ot−1

a (x)
∥∥ ,

from which we can show the desired inequalities by induction.

Next, we observe that the norm of each internal gradient is bounded by

∥∥∇ota(x)
Dη (x)

∥∥ ≤ L∏
i=t+1

∥ai∥Lip ·
L∏

i=t+1

∥wi∥sp (A.26)

and ∥∥∥∇otl(x)
Dη (x)

∥∥∥ ≤ L∏
i=t

∥ai∥Lip ·
L∏

i=t+1

∥wi∥sp . (A.27)

117

This holds because

∥∥∇ota(x)
Dη (x)

∥∥ =
∥∥∥wT

t+1∇ot+1
l (x)Dη (x)

∥∥∥ ≤ ∥wt+1∥sp
∥∥∥∇at+1

l (x)Dη (x)
∥∥∥

and ∥∥∥∇otl(x)
Dη (x)

∥∥∥ =
∥∥∥⟨∇ota(x)

Dη (x) ,
[
a′t(x)|x=otl(x)

]
⟩
∥∥∥ ≤ ∥at∥Lip ∥∥∇ota(x)

Dη (x)
∥∥ ,

from which we can show inequalities Eqs. (A.26) and (A.27) by induction.

Now we have that

∥∇wtDη (x)∥F =
∥∥∥∇otl(x)

Dη (x) ·
(
ot−1
a (x)

)T∥∥∥
F

=
∥∥∥∇otl(x)

Dη (x)
∥∥∥ · ∥∥ot−1

a (x)
∥∥

≤
L∏
i=t

∥ai∥Lip ·
L∏

i=t+1

∥wi∥sp · ∥x∥ ·
t−1∏
i=1

∥ai∥Lip ·
t−1∏
i=1

∥wi∥sp

= ∥x∥ ·
L∏
i=1

∥ai∥Lip ·
L∏
i=1

∥wi∥sp
/
∥wt∥sp

where we use Eqs. (A.24) to (A.27) at the inequality. The upper bound of gradient’s

Frobenius norm for spectrally-normalized discriminators follows directly.

A.2.3 Proof of Proposition 3.3.1.2

As lw(x) is a linear transformation, we have lcw(x) = c · lw(x), and lw(cx) = c · lw(x).

Moreover, since ReLU and leaky ReLU is linear in R>0 and R<0 region, we have ai(cx) =

c · ai(x). Therefore, we have

D′
η(x) =

(
aL ◦ lcL·wL ◦ aL−1 ◦ lcL−1·wL−1 ◦ . . . ◦ a1 ◦ lc1·w1

)
(x)

=
L∏
i=1

ci ·
(
aL ◦ lwL ◦ aL−1 ◦ lwL−1 ◦ . . . ◦ a1 ◦ lw1

)
(x)

= Dη (x)

118

A.2.4 Proof of Theorem 3.3.1.1

For any discriminator Dη = aL◦lwL◦aL−1◦lwL−1◦. . .◦a1◦lw1 , consider η′ =
{
w′
t ≜ ctwt

}L

t=1

with the constraint
∏L

i=1 ci = 1 and ci ∈ R+. Let Q =
∥∥∥∇w′

i
Dη′(x)

∥∥∥
F
∥w′

i∥sp. We have

∥∥∇η′Dη′(x)
∥∥
F

=

√√√√ L∑
i=1

∥∥∥∇w′
i
Dη′(x)

∥∥∥2
F

=

√√√√ L∑
i=1

Q2

c2i ∥wi∥2sp

≥

√√√√L

(
L∏
i=1

Q2

c2i ∥wi∥2sp

)1/L

=
√
L ·Q1/L ·

(
L∏
i=1

∥wi∥sp

)−1/L

and the equality is achieved iff c2i ∥wi∥2sp = c2j ∥wj∥2sp , ∀i, j ∈ [1, L] according to AM-GM in-

equality. When c2i ∥wi∥2sp = c2j ∥wj∥2sp , ∀i, j ∈ [1, L], we have ct =
∏L

i=1 ∥wi∥1/Lsp

/
∥wt∥sp.

A.2.5 Proof of Theorem 3.3.1.2

Main Proof

Since aij are symmetric random variables, we know E
(

aij
∥A∥sp

)
= 0. Further, by symmetry,

we have that for any (i, j) ̸= (h, ℓ), E
(

a2ij
∥A∥2sp

)
= E

(
a2hℓ

∥A∥2sp

)
. Therefore, we have

Var

(
aij
∥A∥sp

)
= E

(
a2ij

∥A∥2sp

)
=

1

mn
· E
(∑m

i=1

∑n
j=1 a

2
ij

∥A∥2sp

)
=

1

mn
· E
(
∥A∥2F
∥A∥2sp

)

Our approach will be to upper and lower bound the quantity 1
mn · E

(
∥A∥2F
∥A∥2sp

)
.

119

Upper bound Assume the singular values of A are σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n}. We have

1

mn
· E
(
∥A∥2F
∥A∥2sp

)
=

1

mn
· E
(∑min{m,n}

i=1 σ2
i

σ2
1

)
≤ min {m,n}

mn
=

1

max {m,n} ,

which gives the desired upper bound.

Lower bound Now for the lower bound, if aij are drawn from zero-mean Gaussian

distribution and max {m,n} ≥ 3, we have

1

mn
· E
(
∥A∥2F
∥A∥2sp

)
(A.28)

=
1

mn
· E
(

1

∥A∥2sp / ∥A∥2F

)
≥ 1

mn
· 1

E
(∥∥∥ A

∥A∥F

∥∥∥2
sp

)
=

1

mn
· 1

E
(
∥B∥2sp

) (A.29)

where B ∈ Rm×n is uniformly sampled from the sphere of m× n-dimension unit ball. We

use the following lemma to lower bound (A.29).

Lemma A.2.5.1 (Theorem 1.1 in [213]). Assume A ∈ Rm×n is uniformly sampled from

the sphere of m× n-dimension unit ball. When max {m,n} ≥ 3, we have

E
(
∥A∥2sp

)
≤ K2

(
E
(

max
1≤i≤m

∥ai•∥2
)

+ E
(

max
1≤j≤n

∥a•j∥2
))

,

where K is a constant which does not depend on m,n. Here ai• denotes the i-th row of A,

and a•j denotes the j-th column of A.1

1Note that the original theorem in [213] requires that the entries of A be i.i.d. symmetric random vari-
ables, whereas in our case the entries are not i.i.d., as we require ∥A∥F = 1. However, the i.i.d. assumption
in their proof is only used to ensure that A, Sσ(1),ϵ(1) (A), and Sσ(2),ϵ(2) (A) have the same distribution,

where σ(t) for t = 0, 1 are vectors of independent random permutations; ϵ(t) for t = 0, 1 are matrices of

i.i.d. random variables with equal probability of being ±1; and Sσ(1),ϵ(1) (A) =
(
ϵ
(1)
ij · a

i,σ
(1)
i (j)

)
i,j

and

120

We thus have that

1

mn
· 1

E
(
∥B∥2sp

) ≥ 1

mn
· 1

K2
(
E
(

max1≤i≤m ∥bi•∥2
)

+ E
(

max1≤j≤n ∥b•j∥2
)) .

Hence, we need to upper bound E
(

max1≤i≤m ∥bi•∥2
)

and E
(

max1≤j≤n ∥b•j∥2
)

. Let

z ∈ Rm be a vector uniformly sampled from the sphere of m-dimension unit ball. Observe

that z
d
= [∥b1•∥ , ..., ∥bm•∥]. The following lemma upper bounds the square of the infinity

norm of this vector.

Lemma A.2.5.2. Assume z = [z1, z2, ..., zn] is uniformly sampled from the sphere of n-

dimension unit ball, where n ≥ 2. Then we have

E
(

max
1≤i≤n

z2i

)
≤ 4 log(n)

n− 1
.

(Proof in Appendix A.2.5)

Hence, when m,n ≥ 2, we have

E
(

max
1≤i≤m

∥bi•∥2
)
≤ 4 log (m)

m− 1

Similarly, we have

E
(

max
1≤j≤n

∥b•j∥2
)
≤ 4 log (n)

n− 1

Sσ(2),ϵ(2) (A) =

(
ϵ
(2)
ij · a

σ
(2)
j (i),j

)
i,j

. Our matrix A satisfies this requirement, and therefore the same theo-

rem holds.

121

Therefore,

Var

(
aij
∥A∥sp

)
≥ 1

mn
· 1

K2
(
4 log(m)
m−1 + 4 log(n)

n−1

)
≥ 1

8K2
· 1

n log (m) + m log (n)

≥ 1

16K2
· 1

max {m,n} log (min {m,n})

which gives the result.

Proof of Lemma A.2.5.2

Proof.

E
(

max
1≤i≤n

z2i

)
=

∫ 1

0
P
(

max
1≤i≤n

z2i ≥ δ

)
dδ

≤
∫ 1

0
min

{
1, n · P

(
z21 ≥ δ

)}
dδ (A.30)

where (A.30) follows from the union bound. Next, we use the following lemma to upper

bound P
(
z21 ≥ δ

)
.

Lemma A.2.5.3. Assume z = [z1, z2, ..., zn] is uniformly sampled from the sphere of n-

dimension unit ball, where n ≥ 2. Then for 1
n ≤ δ < 1 and ∀i ∈ [1, n], we have

P
(
z2i ≥ δ

)
≤ e−

n−1
2

·δ+1.

122

(Proof in Appendix A.2.5). This in turn gives

∫ 1

0
min

{
1, n · P

(
z21 ≥ δ

)}
dδ ≤

∫ min
{
1,

2 log(n)+2
n−1

}
0

1 · dδ +

∫ 1

min
{
1,

2 log(n)+2
n−1

} n · e−n−1
2

·δ+1 · dδ

(A.31)

≤
{

1 (n ≤ 6)
2 log(n)+2

n−1 − 2n
n−1e

−n−3
2 + 2

n−1 (n ≥ 7)

≤ 4 log(n)

n− 1

where Eq. (A.31) follows from Lemma A.2.5.3.

Proof of Lemma A.2.5.3

Due to the symmetry of zi, we only need to prove the inequality for i = 1 case. Let

x = [x1, ..., xn] ∼ N (0, In), where In is the identity matrix in n dimension. We know that
x2
1∑n

i=1 x
2
i

d
= z21 . Therefore, we have

P
(
z21 ≥ δ

)
= P

(
x21∑n
j=1 x

2
j

≥ δ

)
= P

(
x21(∑n

i=2 x
2
i

)
/(n− 1)

≥ (n− 1) δ

1− δ

)
.

Note that x21 and
∑n

i=2 x
2
i are two independent chi-squared random variables, therefore,

we know that
x2
1

(
∑n

i=2 x
2
i)/(n−1)

∼ F (1, n − 1), where F denotes the central F-distribution.

Therefore,

P

(
x21(∑n

i=2 x
2
i

)
/(n− 1)

≥ (n− 1) δ

1− δ

)
= 1− Iδ

(
1

2
,
n− 1

2

)
= I1−δ

(
n− 1

2
,

1

2

)
=

B1−δ

(
n−1
2 , 12

)
B
(
n−1
2 , 12

) , (A.32)

where Ix(a, b) is the regularized incomplete beta function, Bx(a, b) is the incomplete beta

function, and B(a, b) is beta function.

123

For the ease of computation, we take the log of Eq. (A.32). The numerator gives

log

(
B1−δ

(
n− 1

2
,

1

2

))
= log

(
(1− δ)(n−1)/2

(n− 1)/2
2F1

(
n− 1

2
,

1

2
;
n + 1

2
; 1− δ

))

=
n− 1

2
log (1− δ)− log(n− 1) + log

(
2F1

(
n− 1

2
,

1

2
;
n + 1

2
; 1− δ

))
+ log(2) , (A.33)

where 2F1 (·) is the hypergeometric function. Let (q)i =

{
1 (i = 0)

q(q + 1) . . . (q + i− 1) (i > 0)
,

we have

2F1

(
n− 1

2
,

1

2
;
n + 1

2
; 1− δ

)
=

∞∑
i=0

(
n−1
2

)
i

(
1
2

)
i
(1− δ)i(

n+1
2

)
i
· i!

≤
∞∑
i=0

(
1
2

)
i
(1− δ)i

·i!

= δ−
1
2 (A.34)

Substituting it into Eq. (A.33) gives

log

(
B1−δ

(
n− 1

2
,

1

2

))
≤ n− 1

2
log (1− δ)− log (n− 1)− 1

2
log (δ) + log(2) . (A.35)

The log of the denominator of (A.32) is

log

(
B

(
n− 1

2
,

1

2

))
= log

(
Γ
(
n−1
2

)
Γ
(
1
2

)
Γ
(
n
2

))

≥ log

(
√
π ·
(
n + 1

2

)− 1
2

)
= −1

2
log(n + 1) +

1

2
log(2) +

1

2
log(π) . (A.36)

124

where Γ denotes the Gamma function and we use the Gautschi’s inequality: Γ(x+1)

Γ(x+ 1
2)

<

(x + 1)
1
2 for positive real number x.

Combining Eq. (A.32), Eq. (A.35), and Eq. (A.36) we get

log

(
P

(
x21(∑n

i=2 x
2
i

)
/(n− 1)

≥ (n− 1) δ

1− δ

))
≤ n− 1

2
log (1− δ)− log (n− 1) +

1

2
log(n + 1)− 1

2
log (δ) +

1

2
log(2/π)

≤ n− 1

2
log (1− δ)− 1

2
log(n− 1)− 1

2
log(δ) +

1

2
log(6/π)

≤ n− 1

2
log (1− δ)− 1

2
log

(
n− 1

n

)
+

1

2
log(6/π)

≤ n− 1

2
log (1− δ) +

1

2
log

12

π

≤ −n− 1

2
· δ + 1

Therefore, we have

P
(
z21 ≥ δ

)
≤ e−

n−1
2

·δ+1

A.2.6 Proof of Theorem 3.3.2.1

Let sw = cincoutkwkh. Since wij are symmetric random variables, we know E
(
wij

σw

)
= 0.

Therefore, we have

Var

(
wij

σw

)
= E

(
w2
ij

σ2
w

)
=

1

sw
· E
(∑m

i=1

∑n
j=1w

2
ij

σ2
w

)
=

1

sw
· E
(
∥w∥2F
σ2
w

)

Note that

1

sw
· E
(
∥w∥2F
σ2
w

)
∈
[

2

sw
· E

 ∥w∥2F∥∥wcout×(cinkwkh)
∥∥2
sp

+
∥∥wcin×(coutkwkh)

∥∥2
sp

 ,

4

sw
· E

 ∥w∥2F∥∥wcout×(cinkwkh)
∥∥2
sp

+
∥∥wcin×(coutkwkh)

∥∥2
sp

] .

Assume the singular values of wcout×(cinkwkh) are σ1 ≥ σ2 ≥ . . . ≥ σcout , and the

125

singular values of wcin×(coutkwkh) are σ′
1 ≥ σ′

2 ≥ . . . ≥ σ′
cin . We have

4

sw
· E

 ∥w∥2F∥∥wcout×(cinkwkh)
∥∥2
sp

+
∥∥wcin×(coutkwkh)

∥∥2
sp

=

4

sw
· E
(

1

2
·
∑cout

i=1 σ2
i

σ2
1

+
1

2
·
∑cin

i=1 σ
′2
i

σ′2
1

)
≤ 2 (cout + cin)

sw
=

2

cinkwkh + coutkwkh
,

which gives the desired upper bound.

As for the lower bound, observe that

2

sw
· E

 ∥w∥2F∥∥wcout×(cinkwkh)
∥∥2
sp

+
∥∥wcin×(coutkwkh)

∥∥2
sp

=
2

sw
· E

 1∥∥∥wcout×(cinkwkh)

∥w∥F

∥∥∥2
sp

+
∥∥∥wcin×(coutkwkh)

∥w∥F

∥∥∥2
sp

≥ 2

sw
· 1

E
(∥∥∥wcout×(cinkwkh)

∥w∥F

∥∥∥2
sp

)
+ E

(∥∥∥wcin×(coutkwkh)

∥w∥F

∥∥∥2
sp

)

Then we can follow the same approach in Appendix A.2.5 for bounding E
(∥∥∥wcout×(cinkwkh)

∥w∥F

∥∥∥2
sp

)
and E

(∥∥∥wcin×(coutkwkh)

∥w∥F

∥∥∥2
sp

)
, which gives the desired lower bound.

126

Appendix B

Proofs from Chapter 4

In this chapter, we give the proofs for Chapter 4.

B.1 Proofs from § 4.2

B.1.1 Proof of Theorem 4.2.1.1

Assume that the two neighboring datasets are D0 and D1, whose empirical distributions

are µ̂0
m and µ̂1

m, and the trained generator distributions from Algorithm 4.2.1 are g0 and

g1 respectively. The proof has two parts. First, we upper bound the distance between g0

and g1 by building on prior generalization results. Then, we use this distance to prove a

differential privacy guarantee.

Lemma B.1.1.1 (Error of neural-network discriminators, Corollary 3.3 in [155]). Let

µ be the real distribution, and µ̂k be the empirical distribution of µ on k i.i.d training

samples. Define the trained generator from the optimization algorithm as g and assume

the optimization error is bounded by τopt, i.e., dD (µ̂k∥g)− infν∈G dD (µ̂k∥ν) ≤ τopt. Under

assumptions (A2) and (A3), then with probability at least 1 − ξ w.r.t. the randomness of

training samples, we have

dD (µ∥g) ≤ 1

2
τk,ξ = inf

ν∈G
dD (µ∥ν)︸ ︷︷ ︸

approximation error

+ τopt︸︷︷︸
optimization error

+
Cξ√
k︸︷︷︸

generalization error

,

where Cξ is defined in Eq. (4.3).

From this lemma, we know that with high probability, dD
(
µ̂i
m∥gi

)
is small. The next

lemma states that dD
(
µ̂0
m∥µ̂1

m

)
is also small.

Lemma B.1.1.2. Under the assumption (A2), for any two neighboring datasets D0, D1

with m samples, we have

dD
(
µ̂0
m∥µ̂1

m

)
≤ 2∆

m
,

127

.

(Proof in Appendix B.1.6.) Next, we use these results to argue that dD (g0∥g1) is

small with high probability.

Lemma B.1.1.3. Assume we have two training sets D0 and D1, and the trained generator

distributions using D0 and D1 with Algorithm 4.2.1 are g0 and g1, respectively. Under the

assumption of Lemma B.1.1.1 and Lemma B.1.1.2, we have that with probability at least

1− 2ξ,

dD (g0∥g1) ≤ τk,ξ +
2∆

m
.

(Proof in Appendix B.1.7.) We next use this bound on the integral probability metric

to bound Kullback-Leibler (KL) divergence between g0 and g1 with the following lemma.

Lemma B.1.1.4. Given a generator set G and a discriminator set D which satisfy as-

sumption (A1), then we have ∀ν1, ν2 ∈ G

dKL (ν1∥ν2) + dKL (ν2∥ν1) ≤ ΓD,GdD (ν1∥ν2)

where ΓD,G is defined in Eq. (4.1) and dKL (·∥·) is the Kullback–Leibler divergence.

This follows directly from Proposition 2.9 in [155], which states the following. Denote

µ’s and ν’s density functions as ρµ and ρν respectively. If log (ρµ/ρν) ∈ spanD, then we

have

dKL (µ∥ν) + dKL (ν∥µ) ≤ ∥log (ρµ/ρν)∥D,1 dD (µ∥ν) .

Note that ΓD,G = 1 when generators in G are invertible neural networks with l layers and

discriminator set D is (l + 2)-layer neural networks, according to Lemma 4.1 in [150].

Following Lemma B.1.1.4 and Lemma B.1.1.3, immediately we have that with prob-

ability at least 1− 2ξ,

dKL (g0∥g1) + dKL (g1∥g0) ≤ ΓD,G

(
τk,ξ +

2∆

m

)

128

and

dKL (gn0 ∥gn1) + dKL (gn1 ∥gn0) ≤ n · ΓD,G

(
τk,ξ +

2∆

m

)
Then, we connect KL divergence with differential privacy:

Lemma B.1.1.5. If a mechanism M satisfies that for any two neighboring databases D0

and D1, dKL (p∥q) + dKL (q∥p) ≤ s, where p, q are the probability measure of M(D0) and

M(D1) respectively, then M satisfies (ϵ, s
ϵ(1−e−ϵ)

)-probabilistic-differential-privacy for all

ϵ > 0.

(Proof in Appendix B.1.8.)

Note that probabilistic differential privacy implies differential privacy (§ 2.2). From

the above lemmas, we know that the mechanism in Algorithm 4.2.1 under assumptions

(A1)-(A3) satisfies (ϵ, δ)-differential-privacy for any ϵ > 0 and δ ≥ n ΓD,G
ϵ(1−e−ϵ)

(
2∆
m + τk,ξ

)
,

with probability at least 1 − 2ξ over the randomness in Line 1. The final step is to move

the low probability of failure (2ξ) into the δ term.

B.1.2 Proof of Proposition 4.2.1.1

The proof has two parts. First, we lower bound the distance between g0 and g1 by building

on prior generalization results. Then, we use this distance to prove the the lower bound of

δ for (ϵ, δ)-differential-privacy.

Because ∆′ = supf∈D supx,y∈X |f(x) − f(y)|, we know that there exists f ′ ∈ D
and x1, y1 ∈ X such that |f ′(x1) − f ′(y1)| ≥ ∆′

2 . Let’s construct two databases: D0 =

{x1, ..., xm} and D1 = {y1, x2, ..., xm} where x2, ..., xm are arbitrary samples from X . Then

we have

dD
(
µ̂0
m∥µ̂1

m

)
=

1

m
sup
f∈D
{f(x1)− f(y1)} ≥

∆′

2m

where the proof of the first equality is in Appendix B.1.6.

On the other hand, from Lemma B.1.1.1, we know that with probability at least

1− ξ, dD
(
µ̂i
m∥gi

)
≤ 1

2τk,ξ for i = 0, 1. Combining the above, we have the following lemma.

Lemma B.1.2.1. Assume we have two training sets D0 and D1, and the trained generator

using D0 and D1 with Algorithm 4.2.1 are g0 and g1 respectively. Under the assumption

129

of Lemma B.1.1.1 and Lemma B.1.1.2, we have that with probability at least 1− 2ξ,

dD (g0∥g1) ≥
∆′

2m
− τk,ξ

(Proof in Appendix B.1.9.) Note that this lower bound is nonnegative only for

m < ∆′/2τk,ξ.

Now we connect integral probability metric to total variation (TV) distance. Because

the discriminators are bounded (A2), we have

dD (g0∥g1) ≤ 2∆dTV (g0∥g1)

where dTV (g0∥g1) is the TV distance between g0 and g1. From the above, we know that

dTV (g0∥g1) ≥
∆′

4m∆
− τk,ξ

2∆

Finally, we connect TV distance to differential privacy with the following lemma.

Lemma B.1.2.2. If a mechanism satisfies (ϵ, δ)-differential-privacy, then for any two

neighboring databases D0 and D1, we have

dTV (p∥q) ≤ eϵ + 2δ − 1

eϵ + 1

where p, q are the probability measure of M(D0) and M(D1) respectively.

Therefore, we have

δ ≥ (eϵ + 1) ∆′

4m∆
− (eϵ + 1) τk,ξ

2∆
+ 1− eϵ.

B.1.3 Proof of Proposition 4.2.1.2

For any x, we have

130

False positive rate

Tr
ue
po
si
tiv
e
ra
te

1

1
ROC

AUC
dTV

Figure B.1: The upper bound of ROC curves.

ρθtrain (x) =
P (x ∈ D,parameter is θ)

P (parameter is θ)

=
ρpX (x)

∫
x2,...,xm

∏m
i=2 ρpX (xi)P (θ|x, x2, ..., xm) dx2 . . . dxm∫

x1,...,xm

∏m
i=1 ρpX (xi)P (θ|x1, ..., xm) dx1 . . . dxm

= ρqθ (x)

B.1.4 Proof of Proposition 4.2.1.3

It is known from the hypothesis testing literature [214] that, for any attack policy, the

difference between the true positive rate (TP) and false positive rate (FP) is upper bounded

by the total variation (TV) distance dTV (qθ∥pX):

TP ≤ FP + min {dTV (qθ∥pX) , 1− FP} . (B.1)

Note that total variation distance and ROC curve has a very simple geometric rela-

tionship, as noted in [166] (Remark 7). That is, the total variation distance between qθ and

pX is the intersection between the vertical axis and the tangent line to the upper boundary

of the ROC curve that has slope 1 (e.g., see Fig. B.1). This immediately implies that f(x)

is an upper bound for all possible ROC curves.

To show tightness, we can construct a g′ and µ′ as shown in Fig. B.2, such that

dTV (µ′∥g′) = r and they achieve the ROC curve in Fig. B.1.

131

x
1

ρg’(x)

0

r•δ(0)

(1-r) • Uniform(0,1)

x
1

ρμ’(x)

0

r•δ(1)

(1-r) • Uniform(0,1)

Figure B.2: The pair of distributions that achieve the ROC upper bound.

B.1.5 Proof of Theorem 4.2.1.2

We begin by showing that, under the assumptions in Lemma B.1.1.1 and assuming that

∀ν ∈ G, log (PpX/Pν) ∈ spanF , we have that with probability at least 1 − δ w.r.t. the

randomness of training samples,

dTV (qθ∥pX) ≤ ϵTV (m, δ) ≜

√
ΞF ,G,pX · τm,δ

2
√

2
. (B.2)

To show this, note that Lemma B.1.1.1 gives an upper bound on the integral probability

metric between the real and generated distribution. We first connect this distance to the

KL divergence with the following lemma.

Lemma B.1.5.1. Denote the real distribution as µ. Given a generator set G and a dis-

criminator set F which satisfy ∀ν ∈ G, log (Pµ/Pν) ∈ spanF , then we have ∀qθ ∈ G

dKL (qθ∥µ) + dKL (µ∥qθ) ≤ ΞF ,G,µdD (µ∥qθ)

where ΞF ,G,µ ≜ supν∈G ∥log (Pµ/Pν)∥D,1.

Similar to Lemma B.1.1.4, this lemma relies on Proposition 2.9 in [155]. Furthermore,

we use Pinsker’s inequality [215] to upper bound the TV distance by the KL distance.

Pinsker’s inequality says that dTV (a∥b) ≤
√

1
2dKL (a∥b) for any two distributions a, b.

132

Therefore, we have

ΞF ,G,pXdD (pX∥qθ) ≥ 4 · dTV (qθ∥pX)2

Combing this equation with Lemma B.1.1.1 we get the desired inequality.

We can use Eq. (B.2) to upper bound Eq. (B.1) as

TP ≤ FP + min {ϵTV (m, δ) , 1− FP} . (B.3)

Combining Eq. (B.3) with Proposition 4.2.1.3 gives the result.

B.1.6 Proof of Lemma B.1.1.2

Assume that the samples of Di datasets are xi1, ..., x
i
m. Without loss of generality, we

assume that x0i = x1i for 1 ≤ i ≤ m− 1. Then we have

dD
(
µ̂0
m∥µ̂1

m

)
= sup

f∈F

{
Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)]

}
= sup

f∈F

{
1

m

m∑
i=1

f(x0i)−
1

m

m∑
i=1

f(x1i)

}

=
1

m
sup
f∈F

{
f(x0m)− f(x1m)

}
≤ 2∆

m

B.1.7 Proof of Lemma B.1.1.3

From Lemma B.1.1.1, we know that

P
[
dD
(
µ̂0
m∥g0

)
>

1

2
τk,ξ

]
≤ ξ

P
[
dD
(
µ̂1
m∥g1

)
>

1

2
τk,ξ

]
≤ ξ

Therefore,

P
[
dD
(
µ̂0
m∥g0

)
≤ 1

2
τk,ξ ∧ dD

(
µ̂1
m∥g1

)
≤ 1

2
τk,ξ

]
≥ 1− 2ξ.

133

With probability at least 1− 2ξ, we have

dD (g0∥g1) = sup
f∈F
{Ex∼g0 [f(x)]− Ex∼g1 [f(x)]}

= sup
f∈F

{
Ex∼g0 [f(x)]− Ex∼µ̂0

m
[f(x)] + Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)] + Ex∼µ̂1

m
[f(x)]− Ex∼g1 [f(x)]

}
≤ sup

f∈F

{
Ex∼g0 [f(x)]− Ex∼µ̂0

m
[f(x)]

}
+ sup

f∈F

{
Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)]

}
+ sup

f∈F

{
Ex∼µ̂1

m
[f(x)]− Ex∼g1 [f(x)]

}
= sup

f∈F

{
Ex∼µ̂0

m
[f(x)]− Ex∼g0 [f(x)]

}
+ sup

f∈F

{
Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)]

}
+ sup

f∈F

{
Ex∼µ̂1

m
[f(x)]− Ex∼g1 [f(x)]

}
(F is even)

=dD
(
µ̂0
m∥g0

)
+ dD

(
µ̂0
m∥µ̂1

m

)
+ dD

(
µ̂1
m∥g1

)
≤τk,ξ +

2∆

m

B.1.8 Proof of Lemma B.1.1.5

Define ρp, ρq as the probability (density) functions of p and q respectively. Assume set

S0 = {x : log ρp(x)− log ρq(x) ≥ ϵ}, then ∀x ∈ S0, we have ρp(x) ≥ ρq(x)eϵ, and

s ≥dKL (p∥q) + dKL (q∥p)

=

∫
x

(ρp(x)− ρq(x)) (log ρp(x)− log ρq(x))

≥
∫
S

(ρp(x)− ρq(x)) (log ρp(x)− log ρq(x))

(because (ρp(x)− ρq(x)) (log ρp(x)− log ρq(x)) ≥ 0 ∀x)

≥
∫
S
ρp(x)(1− e−ϵ)ϵ

134

i.e. P [M(D0) ∈ S0] ≤ s
ϵ(1−e−ϵ)

. For any set S, we have

P [M(D0) ∈ S \ S0] =

∫
S\S0

ρp(x)dx

≤
∫
S\S0

ρq(x)eϵdx

=eϵP [M(D1) ∈ S \ S0]

B.1.9 Proof of Lemma B.1.2.1

Recall that in Appendix B.1.9 we get

P
[
dD
(
µ̂0
m∥g0

)
≤ 1

2
τk,ξ ∧ dD

(
µ̂1
m∥g1

)
≤ 1

2
τk,ξ

]
≥ 1− 2ξ.

With probability at least 1− 2ξ, we have

dD (g0∥g1) = sup
f∈F
{Ex∼g0 [f(x)]− Ex∼g1 [f(x)]}

= sup
f∈F

{
Ex∼g0 [f(x)]− Ex∼µ̂0

m
[f(x)] + Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)] + Ex∼µ̂1

m
[f(x)]− Ex∼g1 [f(x)]

}
≥− sup

f∈F

{
Ex∼g0 [f(x)]− Ex∼µ̂0

m
[f(x)]

}
+ sup

f∈F

{
Ex∼µ̂0

m
[f(x)]− Ex∼µ̂1

m
[f(x)]

}
− sup

f∈F

{
Ex∼µ̂1

m
[f(x)]− Ex∼g1 [f(x)]

}
=− dD

(
µ̂0
m∥g0

)
+ dD

(
µ̂0
m∥µ̂1

m

)
− dD

(
µ̂1
m∥g1

)
≥ ∆′

2m
− τk,ξ

B.1.10 Proof of Lemma B.1.2.2

Assume that S = {x ∈ X|p(x) > q(x)} and T = X \ S = {x ∈ X|p(x) <= q(x)}. Let

a1 =
∫
x∈S p(x)dx, b1 =

∫
x∈S q(x)dx, a2 =

∫
x∈T p(x)dx, and b2 =

∫
x∈T q(x)dx. Because of

the the differential privacy guarantee, we have

a1 − δ ≤ eϵb1

b2 − δ ≤ eϵa2

135

Note that a1 + a2 = 1, b1 + b2 = 1. Therefore, we have

b1 + a2 ≥
2− 2δ

1 + eϵ

and

dTV (p∥q) =
a1 + b2 − b1 − a2

2
≤ eϵ + 2δ − 1

eϵ + 1
.

B.2 Proofs from § 4.3

B.2.1 Proof of Theorem 4.3.2.1

T ≥ Πϵ

= sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
= sup

ĝ
E
(
P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

Therefore, there exists θ′ s.t. supĝ P
(
ĝ (θ′) ∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≤ T .

Let

Lθ′ ≜ inf
θ∈Supp(pΘ),z:Mg(θ,z)=θ′

g (θ) ,

Rθ′ ≜ sup
θ∈Supp(pΘ),z:Mg(θ,z)=θ′

g (θ) .

We can define a sequence of attackers such that ĝi (θ′) = Lθ′ + (i + 0.5) · 2ϵ for i ∈
{0, 1, . . . , N − 1} and Lθ′ + 2Nϵ ≥ Rθ′ > Lθ′ + 2(N − 1)ϵ (Fig. B.3). From the above,

we have

T ·N ≥
∑
i

P
(
ĝi
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′) ≥ 1,

136

!!! "!!!!! + 2% !!! + 4%
!!! + 2)%

+') +'" +'1."

Possible range of '(,)

Range of
'(,) that +')
succeeds

Range of
'(,) that +'"
succeeds

Range of
'(,) that +'1."
succeeds

Figure B.3: The construction of attackers for proof of Theorem 4.3.2.1. The 2ϵ ranges of
ĝ0, ..., ĝN−1 jointly cover the entire range of possible secret [Lθ′ , Rθ′]. The probability of
guessing the secret correclty for any attacker is ≤ T . Therefore, Rθ′ −Lθ′ >

(
⌈ 1T ⌉ − 1

)
· 2ϵ

(Eq. (B.4)).

Therefore, we have N ≥ ⌈ 1T ⌉, and

Rθ′ − Lθ′ >

(
⌈ 1

T
⌉ − 1

)
· 2ϵ . (B.4)

Then we have

∆ ≥ sup
θ∈Supp(pΘ),z∈Supp(pZ):Mg(θ,z)=θ′

d
(
pXθ
∥pXθ′

)
≥ sup

θi∈Supp(pΘ),zi:Mg(θi,zi)=θ′
D (Xθ1 , Xθ2) (B.5)

>

(
⌈ 1

T
⌉ − 1

)
· 2γϵ. (B.6)

where Eq. (B.6) utilizes Rθ′ − Lθ′ >
(
⌈ 1T ⌉ − 1

)
· 2ϵ and the definition of γ, and Eq. (B.5)

comes from triangle inequality.

137

B.2.2 Proof of Corollary 4.3.4.1

For any Xθ1 , Xθ2 , we have

D (Xθ1 , Xθ2) =
1

2
dWasserstein-α

(
pXθ1
∥pXθ2

)
≥ 1

2
|g (θ1)− g (θ2)| (B.7)

=
1

2
R (Xθ1 , Xθ2) .

where Eq. (B.7) comes from Jensen inequality. Therefore, we have γ = infθ1,θ2∈Supp(pΘ)
D(Xθ1

,Xθ2)
R(Xθ1

,Xθ2)
≥

1
2 . The result then follows from Theorem 4.3.2.1.

B.2.3 Proof of Proposition 4.3.4.1

For any released parameter θ′ = (u′, v′), there exists i ∈ {0, ..., N − 1} such that u′ =

u + (i + 0.5) · s. We have

sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣θ′)
= sup

ĝ

∫ u+(i+1)·s

u+i·s
fU |U ′

(
u|u′

)
·
∫ u+ϵ

u−ϵ
fĝ(u′,v′) (h) dh du

= sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ
fĝ(u′,v′)(h) ·

∫ ĝ
(
fXu′,v′

)
+ϵ

ĝ
(
fXu′,v′

)
−ϵ

fU |U ′
(
u|u′

)
du dh

≤ sup
ĝ

∫ u+(i+1)·s+ϵ

u+i·s−ϵ

2ϵ

s
· fĝ(u′,v′)(h) dh

≤ 2ϵ

s
.

138

Therefore, we have

Πϵ = sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
= sup

ĝ
E
(
P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′))
= E

(
sup
ĝ

P
(
ĝ
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

∣∣∣∣θ′)
)

≤ 2ϵ

s
.

For the distortion, we can easily get that ∆ = s
2 .

B.2.4 Proof of Corollary 4.3.4.2

Let Xλ1 , Xλ2 be two exponential random variables. We have

D (Xλ1 , Xλ2)

R (Xλ1 , Xλ2)
=

1
2 (λ1 − λ2)

− ln (1− α) (λ1 − λ2)
= − 1

2 ln (1− α)
. (B.8)

Therefore we can get that

γ = − 1

2 ln (1− α)
.

B.2.5 Proof of Proposition 4.3.4.2

Both ∆ and Πϵ are obvious from Eq. (B.8).

139

B.2.6 Proof of Corollary 4.3.4.3

Let Xp11,p
1
2,...,p

1
C

and Xp21,p
2
2,...,p

2
C

be two categorical random variables. We have

D
(
Xp11,p

1
2,...,p

1
C
, Xp21,p

2
2,...,p

2
C

)
=

1

2
dTV

(
pX

p11,p
1
2,...,p

1
C

∥pX
p21,p

2
2,...,p

2
C

)
≥ 1

2

∣∣p1j − p2j
∣∣ , (B.9)

R
(
Xp11,p

1
2,...,p

1
C
, Xp21,p

2
2,...,p

2
C

)
=
∣∣p1j − p2j

∣∣ .
Therefore, we can get that

γ ≥ 1

2
.

B.2.7 Proof of Proposition 4.3.4.3

It is straightforward to get the formula for ∆ from Eq. (B.9). Here we focus on the proof

for Πϵ.

We separate the space of possible data parameters into two regions: S1 =
{

(p1, . . . , pC)|pi ∈
[

s
2(C−1) , 1− s

2(C−1)

]
∀i ∈ [C] and

∑
i pi = 1

}
and S2 = {(p1, . . . , pC)|pi ∈ [0, 1) ∀i ∈ [C] and

∑
i pi = 1} \ S1. The high-level idea of

our proof is as follows. Note that for any parameter θ ∈ S1, there exists a Sp1,...,pC s.t.

θ ∈ Sp1,...,pC and Sp1,...,pC ⊂ S1. Therefore, we can bound the attack success rate if θ ∈ S1.

At the same time, the probability of θ ∈ S2 is bounded. Therefore, we can bound the

overall attacker’s success rate (i.e., Πϵ). More specifically, let the optimal attacker be ĝ∗.

We have

Πϵ = P
(
ĝ∗
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
=

∫
θ∈S1

p(θ)P
(
ĝ∗
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
dθ

+

∫
θ∈S2

p(θ)P
(
ĝ∗
(
θ′
)
∈ [g (θ)− ϵ, g (θ) + ϵ]

)
dθ

<
2ϵ

s
+

(
1−

(
1− s

C − 1

)C−1
)
.

140

141

Bibliography

[1] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neu-

ral information processing systems, pp. 2672–2680, 2014. xii, 1, 3, 12, 13, 35, 38,

54

[2] Z. Liu, P. Luo, X. Wang, and X. Tang, “Deep learning face attributes in the wild,”

in Proceedings of International Conference on Computer Vision (ICCV), December

2015. xii, 3, 30

[3] C. Dwork, A. Roth, et al., “The algorithmic foundations of differential privacy.,”

Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp. 211–407, 2014. xiv, 5, 50,

64, 68

[4] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Obfuscatory obscanturism: making work-

load traces of commercially-sensitive systems safe to release,” in 2012 IEEE Network

Operations and Management Symposium, pp. 1279–1286, IEEE, 2012. xiv, 10, 64

[5] A. Srivastava, L. Valkov, C. Russell, M. Gutmann, and C. Sutton, “Veegan: Re-

ducing mode collapse in gans using implicit variational learning,” arXiv preprint

arXiv:1705.07761, 2017. xvii, 29, 30, 31, 32

[6] Y. Yin, Z. Lin, M. Jin, G. Fanti, and V. Sekar, “Practical gan-based synthetic ip

header trace generation using netshare,” in Proceedings of the ACM SIGCOMM 2022

Conference, pp. 458–472, 2022. 1, 6, 66, 73, 102

[7] “The caida ucsd anonymized internet traces.” https://www.caida.org/catalog/

datasets/passive_dataset. Accessed: 2022-01-30. 1, 61

[8] C. Esteban, S. L. Hyland, and G. Rätsch, “Real-valued (medical) time series genera-

tion with recurrent conditional gans,” arXiv preprint arXiv:1706.02633, 2017. 1, 73,

80, 81, 82, 86, 88, 92, 93, 97

[9] L. R. Warren, J. Clarke, S. Arora, and A. Darzi, “Improving data sharing between

acute hospitals in england: an overview of health record system distribution and

142

https://www.caida.org/catalog/datasets/passive_dataset
https://www.caida.org/catalog/datasets/passive_dataset

retrospective observational analysis of inter-hospital transitions of care,” BMJ open,

vol. 9, no. 12, p. e031637, 2019. 1

[10] E. Chaibub Neto, A. Pratap, T. M. Perumal, M. Tummalacherla, P. Snyder, B. M.

Bot, A. D. Trister, S. H. Friend, L. Mangravite, and L. Omberg, “Detecting the

impact of subject characteristics on machine learning-based diagnostic applications,”

NPJ digital medicine, vol. 2, no. 1, pp. 1–6, 2019. 1

[11] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet: A large-

scale hierarchical image database,” in 2009 IEEE conference on computer vision and

pattern recognition, pp. 248–255, Ieee, 2009. 1, 8

[12] Z. Lin, A. Jain, C. Wang, G. Fanti, and V. Sekar, “Using gans for sharing networked

time series data: Challenges, initial promise, and open questions,” in Proceedings of

the ACM Internet Measurement Conference, pp. 464–483, 2020. 1, 9, 52, 60, 66, 73,

102

[13] E. Union, “General data protection regulation.” https://gdpr-info.eu/. 2

[14] O. f. C. R. (OCR), “Hipaa home,” Dec 2022. 2

[15] J. Wilkes, “Google cluster-usage traces v3,” technical report, Google Inc., Moun-

tain View, CA, USA, Apr. 2020. Posted at https://github.com/google/

cluster-data/blob/master/ClusterData2019.md. 2, 8, 10, 77

[16] A. Narayanan and V. Shmatikov, “How to break anonymity of the netflix prize

dataset,” arXiv preprint cs/0610105, 2006. 2, 8, 10

[17] J. Sommers, V. Yegneswaran, and P. Barford, “A framework for malicious work-

load generation,” in Proceedings of the 4th ACM SIGCOMM conference on Internet

measurement, pp. 82–87, 2004. 2, 10

[18] J. Sommers, R. Bowden, B. Eriksson, P. Barford, M. Roughan, and N. Duffield, “Ef-

ficient network-wide flow record generation,” in 2011 Proceedings IEEE INFOCOM,

pp. 2363–2371, IEEE, 2011. 2, 10, 11

[19] T. Issariyakul and E. Hossain, “Introduction to network simulator 2 (ns2),” in In-

troduction to network simulator NS2, pp. 1–18, Springer, 2009. 2, 10

143

https://gdpr-info.eu/
https://github.com/google/cluster-data/blob/master/ClusterData2019.md
https://github.com/google/cluster-data/blob/master/ClusterData2019.md

[20] I. S. Moreno, P. Garraghan, P. Townend, and J. Xu, “Analysis, modeling and sim-

ulation of workload patterns in a large-scale utility cloud,” IEEE Transactions on

Cloud Computing, vol. 2, no. 2, pp. 208–221, 2014. 2, 10

[21] S. Di and F. Cappello, “Gloudsim: Google trace based cloud simulator with virtual

machines,” Software: Practice and Experience, vol. 45, no. 11, pp. 1571–1590, 2015.

2, 10

[22] D. Magalhães, R. N. Calheiros, R. Buyya, and D. G. Gomes, “Workload modeling for

resource usage analysis and simulation in cloud computing,” Computers & Electrical

Engineering, vol. 47, pp. 69–81, 2015. 2, 10

[23] L. Sliwko and V. Getov, “Agocs—accurate google cloud simulator framework,”

in 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, Ad-

vanced and Trusted Computing, Scalable Computing and Communications, Cloud

and Big Data Computing, Internet of People, and Smart World Congress

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld), pp. 550–558, IEEE, 2016. 2, 10

[24] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, “Benchmark-

ing cloud serving systems with ycsb,” in Proceedings of the 1st ACM symposium on

Cloud computing, pp. 143–154, 2010. 2, 11

[25] V. Tarasov, E. Zadok, and S. Shepler, “Filebench: A flexible framework for file system

benchmarking,” USENIX; login, vol. 41, no. 1, pp. 6–12, 2016. 2, 11

[26] “Fio’s documentation.” 2, 11

[27] J. Sommers and P. Barford, “Self-configuring network traffic generation,” in Proceed-

ings of the 4th ACM SIGCOMM conference on Internet measurement, pp. 68–81,

ACM, 2004. 2, 11

[28] M. C. Weigle, P. Adurthi, F. Hernández-Campos, K. Jeffay, and F. D. Smith, “Tmix:

a tool for generating realistic tcp application workloads in ns-2,” ACM SIGCOMM

Computer Communication Review, vol. 36, no. 3, pp. 65–76, 2006. 2, 11

[29] J. Yin, X. Lu, X. Zhao, H. Chen, and X. Liu, “Burse: A bursty and self-similar work-

load generator for cloud computing,” IEEE Transactions on Parallel and Distributed

Systems, vol. 26, no. 3, pp. 668–680, 2014. 2, 11

144

[30] T. Li and J. Liu, “Cluster-based spatiotemporal background traffic generation for

network simulation,” ACM Transactions on Modeling and Computer Simulation

(TOMACS), vol. 25, no. 1, pp. 1–25, 2014. 2, 11

[31] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven work-

load modeling for the cloud,” in 2010 IEEE 26th International Conference on Data

Engineering Workshops (ICDEW 2010), pp. 87–92, IEEE, 2010. 2, 11

[32] B. Melamed, J. R. Hill, and D. Goldsman, “The tes methodology: Modeling empirical

stationary time series,” in Proceedings of the 24th conference on Winter simulation,

pp. 135–144, ACM, 1992. 2, 11

[33] B. Melamed and J. R. Hill, “Applications of the tes modeling methodology,” in

Proceedings of 1993 Winter Simulation Conference-(WSC’93), pp. 1330–1338, IEEE,

1993. 2, 11, 92

[34] B. Melamed, “An overview of tes processes and modeling methodology,” in Perfor-

mance Evaluation of Computer and Communication Systems, pp. 359–393, Springer,

1993. 2, 11

[35] B. Melamed and D. E. Pendarakis, “Modeling full-length vbr video using markov-

renewal-modulated tes models,” IEEE Journal on Selected Areas in Communications,

vol. 16, no. 5, pp. 600–611, 1998. 2, 11

[36] K. V. Vishwanath and A. Vahdat, “Swing: Realistic and responsive network traffic

generation,” IEEE/ACM Transactions on Networking (TON), vol. 17, no. 3, pp. 712–

725, 2009. 2, 11

[37] Y. Denneulin, E. Romagnoli, and D. Trystram, “A synthetic workload generator

for cluster computing,” in 18th International Parallel and Distributed Processing

Symposium, 2004. Proceedings., p. 243, IEEE, 2004. 2, 11

[38] S. Antonatos, K. G. Anagnostakis, and E. P. Markatos, “Generating realistic work-

loads for network intrusion detection systems,” in Proceedings of the 4th international

workshop on Software and performance, pp. 207–215, 2004. 2, 11

[39] D.-C. Juan, L. Li, H.-K. Peng, D. Marculescu, and C. Faloutsos, “Beyond poisson:

Modeling inter-arrival time of requests in a datacenter,” in Pacific-Asia Conference

on Knowledge Discovery and Data Mining, pp. 198–209, Springer, 2014. 2, 11

145

[40] S. Di, D. Kondo, and F. Cappello, “Characterizing and modeling cloud applica-

tions/jobs on a google data center,” The Journal of Supercomputing, vol. 69, no. 1,

pp. 139–160, 2014. 2, 11

[41] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for

improved quality, stability, and variation,” arXiv preprint arXiv:1710.10196, 2017.

3, 12, 34

[42] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative

adversarial networks,” in Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pp. 4401–4410, 2019. 3

[43] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for

generative adversarial networks,” arXiv preprint arXiv:1802.05957, 2018. 4, 5, 34,

35, 36, 37, 38, 40, 41, 44, 46, 48, 49, 54, 116

[44] I. Goodfellow, “Nips 2016 tutorial: Generative adversarial networks,” arXiv preprint

arXiv:1701.00160, 2016. 4, 5, 14, 16, 17, 84

[45] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “PacGAN: The power of two samples

in generative adversarial networks,” in Advances in Neural Information Processing

Systems, 2018. 4, 5

[46] A. Srivastava, L. Valkov, C. Russell, M. U. Gutmann, and C. Sutton, “Veegan:

Reducing mode collapse in gans using implicit variational learning,” in Advances in

Neural Information Processing Systems, pp. 3308–3318, 2017. 4, 80, 85

[47] D. Blackwell, “Equivalent comparisons of experiments,” The Annals of Mathematical

Statistics, vol. 24, no. 2, pp. 265–272, 1953. 5, 19, 22, 24, 107

[48] F. Farnia, J. M. Zhang, and D. Tse, “Generalizable adversarial training via spectral

normalization,” arXiv preprint arXiv:1811.07457, 2018. 5, 34, 35, 37, 38, 40, 41, 47,

48

[49] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and

L. Zhang, “Deep learning with differential privacy,” in Proceedings of the 2016 ACM

SIGSAC Conference on Computer and Communications Security, pp. 308–318, ACM,

2016. 6

146

[50] H. Company, “Hazy builds on new technique to generate sequential

and time-series synthetic data.” https://hazy.com/blog/2020/07/09/

how-to-generate-sequential-data, 2022. 6, 101, 102

[51] B. Software, “Synthesizing series of transactions with a Generative

Adversarial Network.” https://blog.boogiesoftware.com/2020/02/

synthesizing-series-of-transactions.html, 2022. 6, 101, 102

[52] Hazy, “Generate Synthetic Time-series Data with Open-

source Tools.” https://www.kdnuggets.com/2022/06/

generate-synthetic-timeseries-data-opensource-tools.html, 2022. 6,

101, 102

[53] H. Ling, K. Kreis, D. Li, S. W. Kim, A. Torralba, and S. Fidler, “Editgan: High-

precision semantic image editing,” Advances in Neural Information Processing Sys-

tems, vol. 34, pp. 16331–16345, 2021. 6

[54] K. M. Lewis, S. Varadharajan, and I. Kemelmacher-Shlizerman, “Tryongan: Body-

aware try-on via layered interpolation,” ACM Transactions on Graphics (TOG),

vol. 40, no. 4, pp. 1–10, 2021. 6

[55] X. Huang, A. Mallya, T.-C. Wang, and M.-Y. Liu, “Multimodal conditional im-

age synthesis with product-of-experts gans,” in European Conference on Computer

Vision, pp. 91–109, Springer, 2022. 6, 78

[56] J. Jiang, V. Sekar, H. Milner, D. Shepherd, I. Stoica, and H. Zhang, “Cfa: A practical

prediction system for video qoe optimization.,” in NSDI, pp. 137–150, 2016. 8, 79

[57] A. Manousis, H. Shah, H. Milner, Y. Li, H. Zhang, and V. Sekar, “The shape of

view: an alert system for video viewership anomalies,” in Proceedings of the 21st

ACM Internet Measurement Conference, pp. 245–260, 2021. 8, 52, 77

[58] Nuance, “Nuance.” https://www.nuance.com/index.html, 2022. 8

[59] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

convolutional neural networks,” in Advances in neural information processing sys-

tems, pp. 1097–1105, 2012. 8

147

https://hazy.com/blog/2020/07/09/how-to-generate-sequential-data
https://hazy.com/blog/2020/07/09/how-to-generate-sequential-data
https://blog.boogiesoftware.com/2020/02/synthesizing-series-of-transactions.html
https://blog.boogiesoftware.com/2020/02/synthesizing-series-of-transactions.html
https://www.kdnuggets.com/2022/06/generate-synthetic-timeseries-data-opensource-tools.html
https://www.kdnuggets.com/2022/06/generate-synthetic-timeseries-data-opensource-tools.html
https://www.nuance.com/index.html

[60] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object de-

tection with region proposal networks,” in Advances in neural information processing

systems, pp. 91–99, 2015. 8

[61] E. Cortez, A. Bonde, A. Muzio, M. Russinovich, M. Fontoura, and R. Bianchini,

“Resource central: Understanding and predicting workloads for improved resource

management in large cloud platforms,” in Proceedings of the 26th Symposium on

Operating Systems Principles, pp. 153–167, 2017. 8

[62] S. Luo, H. Xu, C. Lu, K. Ye, G. Xu, L. Zhang, Y. Ding, J. He, and C. Xu, “Char-

acterizing microservice dependency and performance: Alibaba trace analysis,” in

Proceedings of the ACM Symposium on Cloud Computing, pp. 412–426, 2021. 8

[63] A. Jajoo, Y. C. Hu, X. Lin, and N. Deng, “A case for task sampling based learning for

cluster job scheduling,” in 19th USENIX Symposium on Networked Systems Design

and Implementation (NSDI 22), pp. 19–33, 2022. 8

[64] M. Mohammady, L. Wang, Y. Hong, H. Louafi, M. Pourzandi, and M. Debbabi,

“Preserving both privacy and utility in network trace anonymization,” pp. 459–474,

10 2018. 10

[65] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “Pixelcnn++: Improving the

pixelcnn with discretized logistic mixture likelihood and other modifications,” arXiv

preprint arXiv:1701.05517, 2017. 11

[66] M. C. Calzarossa, L. Massari, and D. Tessera, “Workload characterization: A survey

revisited,” ACM Computing Surveys (CSUR), vol. 48, no. 3, pp. 1–43, 2016. 11

[67] L. E. Baum and T. Petrie, “Statistical inference for probabilistic functions of finite

state markov chains,” The annals of mathematical statistics, vol. 37, no. 6, pp. 1554–

1563, 1966. 11

[68] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in

Neural networks: Tricks of the trade, pp. 599–619, Springer, 2012. 11

[69] L. Dinh, D. Krueger, and Y. Bengio, “Nice: Non-linear independent components

estimation,” arXiv preprint arXiv:1410.8516, 2014. 12

148

[70] J. Ho, X. Chen, A. Srinivas, Y. Duan, and P. Abbeel, “Flow++: Improving flow-

based generative models with variational dequantization and architecture design,” in

International Conference on Machine Learning, pp. 2722–2730, PMLR, 2019. 12

[71] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint

arXiv:1312.6114, 2013. 12, 58

[72] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,” Advances

in Neural Information Processing Systems, vol. 33, pp. 6840–6851, 2020. 12, 103

[73] Y. Song and S. Ermon, “Generative modeling by estimating gradients of the data

distribution,” Advances in Neural Information Processing Systems, vol. 32, 2019. 12,

103

[74] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli, “Deep unsuper-

vised learning using nonequilibrium thermodynamics,” in International Conference

on Machine Learning, pp. 2256–2265, PMLR, 2015. 12, 103

[75] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,

A. Courville, and Y. Bengio, “Generative adversarial nets,” in Advances in neural

information processing systems, pp. 2672–2680, 2014. 13, 18, 29

[76] E. L. Denton, S. Chintala, R. Fergus, et al., “Deep generative image models using

a laplacian pyramid of adversarial networks,” in Advances in neural information

processing systems, pp. 1486–1494, 2015. 13

[77] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence generative adversarial

nets with policy gradient.,” in AAAI, pp. 2852–2858, 2017. 13, 80, 82, 83

[78] C. Vondrick, H. Pirsiavash, and A. Torralba, “Generating videos with scene dynam-

ics,” in Advances in Neural Information Processing Systems 29, pp. 613–621, 2016.

13

[79] C. Ledig, L. Theis, F. Huszár, J. Caballero, A. Cunningham, A. Acosta, A. Aitken,

A. Tejani, J. Totz, and Z. Wang, “Photo-realistic single image super-resolution using

a generative adversarial network,” arXiv preprint arXiv:1609.04802, 2016. 13

[80] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation with

conditional adversarial networks,” arXiv preprint arXiv:1611.07004, 2016. 13

149

[81] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “Distributed repre-

sentations of words and phrases and their compositionality,” in Advances in neural

information processing systems, pp. 3111–3119, 2013. 13

[82] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible 1x1 convolu-

tions,” arXiv preprint arXiv:1807.03039, 2018. 14

[83] A. Ilyas, A. Jalal, E. Asteri, C. Daskalakis, and A. G. Dimakis, “The robust

manifold defense: Adversarial training using generative models,” arXiv preprint

arXiv:1712.09196, 2017. 14

[84] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998. 16

[85] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training gans,” in Advances in Neural Information Processing

Systems, pp. 2234–2242, 2016. 16, 29, 32

[86] S. Reed, Z. Akata, X. Yan, L. Logeswaran, B. Schiele, and H. Lee, “Generative

adversarial text to image synthesis,” arXiv preprint arXiv:1605.05396, 2016. 16

[87] L. Metz, B. Poole, D. Pfau, and J. Sohl-Dickstein, “Unrolled generative adversarial

networks,” arXiv preprint arXiv:1611.02163, 2016. 17, 29, 30, 32

[88] V. Nagarajan and J. Z. Kolter, “Gradient descent gan optimization is locally stable,”

in Advances in Neural Information Processing Systems 30 (I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), pp. 5591–

5600, 2017. 17

[89] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential

privacy,” IEEE Transactions on Information Theory, vol. 63, pp. 4037–4049, June

2017. 24

[90] H.-Y. Lee, J.-B. Huang, M. Singh, and M.-H. Yang, “Unsupervised representation

learning by sorting sequences,” in Proceedings of the IEEE international conference

on computer vision, pp. 667–676, 2017. 29

[91] Y. LeCun, “The mnist database of handwritten digits,” http://yann. lecun.

com/exdb/mnist/, 1998. 29, 30

150

[92] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015. 29, 32

[93] V. Dumoulin, I. Belghazi, B. Poole, A. Lamb, M. Arjovsky, O. Mastropietro, and

A. Courville, “Adversarially learned inference,” arXiv preprint arXiv:1606.00704,

2016. 29, 32

[94] J. Donahue, P. Krähenbühl, and T. Darrell, “Adversarial feature learning,” arXiv

preprint arXiv:1605.09782, 2016. 29

[95] S. Arora and Y. Zhang, “Do gans actually learn the distribution? an empirical study,”

arXiv preprint arXiv:1706.08224, 2017. 32

[96] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks

on graphs with fast localized spectral filtering,” in Advances in Neural Information

Processing Systems, pp. 3844–3852, 2016. 34

[97] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li, “Attention-based graph neural

network for semi-supervised learning,” arXiv preprint arXiv:1803.03735, 2018. 34

[98] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional

networks,” arXiv preprint arXiv:1609.02907, 2016. 34

[99] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R. Salakhutdinov, and

A. J. Smola, “Deep sets,” in Advances in Neural Information Processing Systems,

pp. 3391–3401, 2017. 34

[100] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learn-

ing with deep convolutional generative adversarial networks,” arXiv preprint

arXiv:1511.06434, 2015. 34, 35, 41

[101] A. Brock, J. Donahue, and K. Simonyan, “Large scale gan training for high fidelity

natural image synthesis,” arXiv preprint arXiv:1809.11096, 2018. 34, 36, 48

[102] M. Arjovsky and L. Bottou, “Towards principled methods for training generative

adversarial networks,” 2017. 34, 36, 37, 40

151

[103] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein gan,” arXiv preprint

arXiv:1701.07875, 2017. 34, 35, 40, 66, 80, 85

[104] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C. Courville, “Improved

training of wasserstein gans,” in Advances in neural information processing systems,

pp. 5767–5777, 2017. 34, 35, 36, 38, 40, 46, 80, 85

[105] X. Wei, B. Gong, Z. Liu, W. Lu, and L. Wang, “Improving the improved train-

ing of wasserstein gans: A consistency term and its dual effect,” arXiv preprint

arXiv:1803.01541, 2018. 34, 35

[106] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “Neural photo editing with intro-

spective adversarial networks,” arXiv preprint arXiv:1609.07093, 2016. 34, 40, 46,

48

[107] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization

to accelerate training of deep neural networks,” in Advances in neural information

processing systems, pp. 901–909, 2016. 34, 40, 46, 48

[108] H. Gouk, E. Frank, B. Pfahringer, and M. Cree, “Regularisation of neural networks

by enforcing lipschitz continuity,” arXiv preprint arXiv:1804.04368, 2018. 34, 35, 36,

48

[109] Z. Lin, K. K. Thekumparampil, G. Fanti, and S. Oh, “Infogan-cr: Disentangling

generative adversarial networks with contrastive regularizers,” ICML, 2020. 34, 36

[110] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative ad-

versarial networks,” arXiv preprint arXiv:1805.08318, 2018. 34, 36, 48

[111] A. Jolicoeur-Martineau, “The relativistic discriminator: a key element missing from

standard gan,” arXiv preprint arXiv:1807.00734, 2018. 34, 36

[112] J. Yu, Z. Lin, J. Yang, X. Shen, X. Lu, and T. S. Huang, “Free-form image inpainting

with gated convolution,” in Proceedings of the IEEE International Conference on

Computer Vision, pp. 4471–4480, 2019. 34, 36

[113] T. Miyato and M. Koyama, “cgans with projection discriminator,” arXiv preprint

arXiv:1802.05637, 2018. 34, 36

152

[114] A. X. Lee, R. Zhang, F. Ebert, P. Abbeel, C. Finn, and S. Levine, “Stochastic

adversarial video prediction,” arXiv preprint arXiv:1804.01523, 2018. 34, 36

[115] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen, “Im-

proved techniques for training gans,” in Advances in neural information processing

systems, pp. 2234–2242, 2016. 34, 92

[116] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help

optimization?,” in Advances in Neural Information Processing Systems, pp. 2483–

2493, 2018. 35, 37

[117] H. Jiang, Z. Chen, M. Chen, F. Liu, D. Wang, and T. Zhao, “On computation

and generalization of generative adversarial networks under spectrum control,” in

International Conference on Learning Representations, 2019. 35

[118] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky, “Spectrally-normalized margin

bounds for neural networks,” in Advances in Neural Information Processing Systems,

pp. 6240–6249, 2017. 35

[119] B. Neyshabur, S. Bhojanapalli, and N. Srebro, “A pac-bayesian approach

to spectrally-normalized margin bounds for neural networks,” arXiv preprint

arXiv:1707.09564, 2017. 35

[120] L. Wang, J. Huang, K. Huang, Z. Hu, G. Wang, and Q. Gu, “Improving neural

language generation with spectrum control,” in International Conference on Learning

Representations, 2019. 35

[121] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving the general-

izability of deep learning,” arXiv preprint arXiv:1705.10941, 2017. 35, 48

[122] A. Odena, J. Buckman, C. Olsson, T. Brown, C. Olah, C. Raffel, and I. Goodfellow,

“Is generator conditioning causally related to gan performance?,” in International

Conference on Machine Learning, pp. 3849–3858, 2018. 35

[123] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradi-

ent descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–

166, 1994. 36

153

[124] R. Pascanu, T. Mikolov, and Y. Bengio, “Understanding the exploding gradient

problem,” CoRR, abs/1211.5063, vol. 2, p. 417, 2012. 36

[125] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty of training recurrent neural

networks,” in International conference on machine learning, pp. 1310–1318, 2013. 36

[126] J. Bernstein, A. Vahdat, Y. Yue, and M.-Y. Liu, “On the distance between two neural

networks and the stability of learning,” arXiv preprint arXiv:2002.03432, 2020. 36

[127] Y. LeCun, L. Bottou, G. B. Orr, and K. R. Müller, Efficient BackProp, pp. 9–50.

Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. 40, 43

[128] Y. Tsuzuku, I. Sato, and M. Sugiyama, “Lipschitz-margin training: Scalable certifi-

cation of perturbation invariance for deep neural networks,” in Advances in Neural

Information Processing Systems, pp. 6541–6550, 2018. 41

[129] S. Singla and S. Feizi, “Fantastic four: Differentiable and efficient bounds on singular

values of convolution layers,” in International Conference on Learning Representa-

tions, 2021. 42

[130] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedfor-

ward neural networks,” in Proceedings of the thirteenth international conference on

artificial intelligence and statistics, pp. 249–256, 2010. 43

[131] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing

human-level performance on imagenet classification,” in Proceedings of the IEEE

international conference on computer vision, pp. 1026–1034, 2015. 45

[132] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training

by reducing internal covariate shift,” arXiv preprint arXiv:1502.03167, 2015. 46

[133] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” arXiv preprint

arXiv:1607.06450, 2016. 46

[134] ajbrock, “Neural photo editor.” https://github.com/ajbrock/

Neural-Photo-Editor, 2017. 48

[135] J. Pennington, S. S. Schoenholz, and S. Ganguli, “Resurrecting the sigmoid in

deep learning through dynamical isometry: theory and practice,” arXiv preprint

arXiv:1711.04735, 2017. 48

154

https://github.com/ajbrock/Neural-Photo-Editor
https://github.com/ajbrock/Neural-Photo-Editor

[136] A. M. Saxe, J. L. McClelland, and S. Ganguli, “Exact solutions to the nonlinear

dynamics of learning in deep linear neural networks,” arXiv preprint arXiv:1312.6120,

2013. 48

[137] C. Dwork, “Differential privacy: A survey of results,” in International Conference on

Theory and Applications of Models of Computation, pp. 1–19, Springer, 2008. 50

[138] S. Meiser, “Approximate and probabilistic differential privacy definitions.,” IACR

Cryptology ePrint Archive, vol. 2018, p. 277, 2018. 51

[139] A. Sablayrolles, M. Douze, C. Schmid, Y. Ollivier, and H. Jégou, “White-box vs

black-box: Bayes optimal strategies for membership inference,” in International Con-

ference on Machine Learning, pp. 5558–5567, 2019. 51, 57, 60, 62

[140] Z. Li and Y. Zhang, “Label-leaks: Membership inference attack with label,” arXiv

preprint arXiv:2007.15528, 2020. 51

[141] Y. Long, V. Bindschaedler, L. Wang, D. Bu, X. Wang, H. Tang, C. A. Gunter,

and K. Chen, “Understanding membership inferences on well-generalized learning

models,” arXiv preprint arXiv:1802.04889, 2018. 51

[142] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Exploiting unintended

feature leakage in collaborative learning,” in 2019 IEEE Symposium on Security and

Privacy (SP), pp. 691–706, IEEE, 2019. 51

[143] A. Salem, Y. Zhang, M. Humbert, P. Berrang, M. Fritz, and M. Backes, “Ml-leaks:

Model and data independent membership inference attacks and defenses on machine

learning models,” arXiv preprint arXiv:1806.01246, 2018. 51

[144] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership inference attacks

against machine learning models,” in 2017 IEEE Symposium on Security and Privacy

(SP), pp. 3–18, IEEE, 2017. 51

[145] S. Yeom, I. Giacomelli, M. Fredrikson, and S. Jha, “Privacy risk in machine learn-

ing: Analyzing the connection to overfitting,” in 2018 IEEE 31st Computer Security

Foundations Symposium (CSF), pp. 268–282, IEEE, 2018. 51

155

[146] J. Hayes, L. Melis, G. Danezis, and E. De Cristofaro, “Logan: Membership inference

attacks against generative models,” Proceedings on Privacy Enhancing Technologies,

vol. 2019, no. 1, pp. 133–152, 2019. 51, 57, 58, 89

[147] D. Chen, N. Yu, Y. Zhang, and M. Fritz, “Gan-leaks: A taxonomy of membership

inference attacks against gans,” arXiv preprint arXiv:1909.03935, 2019. 51, 57, 58,

60

[148] B. Hilprecht, M. Härterich, and D. Bernau, “Monte carlo and reconstruction member-

ship inference attacks against generative models,” Proceedings on Privacy Enhancing

Technologies, vol. 2019, no. 4, pp. 232–249, 2019. 51, 58

[149] L. Wasserman and S. Zhou, “A statistical framework for differential privacy,” Journal

of the American Statistical Association, vol. 105, no. 489, pp. 375–389, 2010. 52, 74

[150] Y. Bai, T. Ma, and A. Risteski, “Approximability of discriminators implies diversity

in gans,” arXiv preprint arXiv:1806.10586, 2018. 53, 128

[151] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using real nvp,” arXiv

preprint arXiv:1605.08803, 2016. 53

[152] J. Behrmann, W. Grathwohl, R. T. Chen, D. Duvenaud, and J.-H. Jacobsen, “Invert-

ible residual networks,” in International Conference on Machine Learning, pp. 573–

582, PMLR, 2019. 53

[153] Z. Lin, V. Sekar, and G. Fanti, “Why spectral normalization stabilizes gans: Analysis

and improvements,” arXiv preprint arXiv:2009.02773, 2020. 54

[154] A. Müller, “Integral probability metrics and their generating classes of functions,”

Advances in Applied Probability, vol. 29, no. 2, pp. 429–443, 1997. 54

[155] P. Zhang, Q. Liu, D. Zhou, T. Xu, and X. He, “On the discrimination-generalization

tradeoff in gans,” arXiv preprint arXiv:1711.02771, 2017. 54, 62, 127, 128, 132

[156] S. Nowozin, B. Cseke, and R. Tomioka, “f-gan: Training generative neural samplers

using variational divergence minimization,” in Advances in neural information pro-

cessing systems, pp. 271–279, 2016. 58

156

[157] A. v. d. Oord, N. Kalchbrenner, and K. Kavukcuoglu, “Pixel recurrent neural net-

works,” arXiv preprint arXiv:1601.06759, 2016. 58

[158] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org. 58

[159] “Omie: The online mutual information estimator,” 2017.

[160] Google, “Web traffic time series forecasting,” 2018. https://www.kaggle.com/c/

web-traffic-time-series-forecasting. 60, 73, 90

[161] T. Benson, A. Akella, and D. A. Maltz, “Network traffic characteristics of data centers

in the wild,” in Proceedings of the 10th ACM SIGCOMM conference on Internet

measurement, pp. 267–280, ACM, 2010. 61

[162] R. Bassily, A. Cheu, S. Moran, A. Nikolov, J. Ullman, and S. Wu, “Private query

release assisted by public data,” in International Conference on Machine Learning,

pp. 695–703, PMLR, 2020. 61

[163] D. Yu, S. Naik, A. Backurs, S. Gopi, H. A. Inan, G. Kamath, J. Kulkarni, Y. T.

Lee, A. Manoel, L. Wutschitz, et al., “Differentially private fine-tuning of language

models,” arXiv preprint arXiv:2110.06500, 2021. 61

[164] T. Liu, G. Vietri, T. Steinke, J. Ullman, and Z. S. Wu, “Leveraging public data for

practical private query release,” arXiv preprint arXiv:2102.08598, 2021. 61

[165] A. Kurakin, S. Chien, S. Song, R. Geambasu, A. Terzis, and A. Thakurta, “Toward

training at imagenet scale with differential privacy,” 2022. 61

[166] Z. Lin, A. Khetan, G. Fanti, and S. Oh, “Pacgan: The power of two samples in gener-

ative adversarial networks,” in Advances in Neural Information Processing Systems,

pp. 1505–1514, 2018. 66, 80, 85, 102, 131

[167] J. Jordon, J. Yoon, and M. Van Der Schaar, “Pate-gan: Generating synthetic data

with differential privacy guarantees,” in International conference on learning repre-

sentations, 2018. 73

[168] J. Yoon, D. Jarrett, and M. Van der Schaar, “Time-series generative adversarial

networks,” Advances in neural information processing systems, vol. 32, 2019. 73

157

http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://www.kaggle.com/c/web-traffic-time-series-forecasting
https://www.kaggle.com/c/web-traffic-time-series-forecasting

[169] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces: format+

schema,” Google Inc., White Paper, pp. 1–14, 2011. 74, 90, 91

[170] F. C. Commission, “Raw data - measuring broadband

america - seventh report,” 2018. https://www.fcc.gov/

reports-research/reports/measuring-broadband-america/

raw-data-measuring-broadband-america-seventh. 74, 90

[171] W. Zhang, O. Ohrimenko, and R. Cummings, “Attribute privacy: Framework and

mechanisms,” in 2022 ACM Conference on Fairness, Accountability, and Trans-

parency, pp. 757–766, 2022. 74

[172] I. Issa, A. B. Wagner, and S. Kamath, “An operational approach to information

leakage,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1625–1657,

2019. 77

[173] L. for Computational Physiology, “eicu data.” 79

[174] A. PATNE, “Bank transaction data.” https://www.kaggle.com/datasets/

apoorvwatsky/bank-transaction-data, 2018. 79

[175] R. J. Bolton and D. J. Hand, “Statistical fraud detection: A review,” Statistical

science, vol. 17, no. 3, pp. 235–255, 2002. 79

[176] J. Srivastava, R. Cooley, M. Deshpande, and P.-N. Tan, “Web usage mining: Dis-

covery and applications of usage patterns from web data,” Acm Sigkdd Explorations

Newsletter, vol. 1, no. 2, pp. 12–23, 2000. 79

[177] T. T. S. Nguyen, H. Y. Lu, and J. Lu, “Web-page recommendation based on web

usage and domain knowledge,” IEEE Transactions on Knowledge and Data Engi-

neering, vol. 26, no. 10, pp. 2574–2587, 2013. 79

[178] R. Forsati and M. R. Meybodi, “Effective page recommendation algorithms based on

distributed learning automata and weighted association rules,” Expert Systems with

Applications, vol. 37, no. 2, pp. 1316–1330, 2010. 79

[179] S. Chaisiri, B.-S. Lee, and D. Niyato, “Optimization of resource provisioning cost in

cloud computing,” IEEE transactions on services Computing, vol. 5, no. 2, pp. 164–

177, 2011. 79

158

https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-seventh
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-seventh
https://www.fcc.gov/reports-research/reports/measuring-broadband-america/raw-data-measuring-broadband-america-seventh
https://www.kaggle.com/datasets/apoorvwatsky/bank-transaction-data
https://www.kaggle.com/datasets/apoorvwatsky/bank-transaction-data

[180] M. Maqableh, H. Karajeh, et al., “Job scheduling for cloud computing using neural

networks,” Communications and Network, vol. 6, no. 03, p. 191, 2014. 79

[181] J. T. Guibas, T. S. Virdi, and P. S. Li, “Synthetic medical images from dual generative

adversarial networks,” arXiv preprint arXiv:1709.01872, 2017. 80

[182] E. Choi, S. Biswal, B. Malin, J. Duke, W. F. Stewart, and J. Sun, “Generating multi-

label discrete patient records using generative adversarial networks,” arXiv preprint

arXiv:1703.06490, 2017. 80

[183] M. Frid-Adar, E. Klang, M. Amitai, J. Goldberger, and H. Greenspan, “Synthetic

data augmentation using gan for improved liver lesion classification,” in 2018 IEEE

15th international symposium on biomedical imaging (ISBI 2018), pp. 289–293,

IEEE, 2018. 80

[184] C. Han, H. Hayashi, L. Rundo, R. Araki, W. Shimoda, S. Muramatsu, Y. Furukawa,

G. Mauri, and H. Nakayama, “Gan-based synthetic brain mr image generation,”

in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),

pp. 734–738, IEEE, 2018. 80

[185] W. Fedus, I. Goodfellow, and A. M. Dai, “Maskgan: better text generation via filling

in the ,” arXiv preprint arXiv:1801.07736, 2018. 80

[186] J. Yoon, D. Jarrett, and M. van der Schaar, “Time-series generative adversarial

networks,” in Advances in Neural Information Processing Systems, pp. 5509–5519,

2019. 80, 81, 82, 86, 88, 93

[187] J. Yoon, “TimeGAN code repository.” https://bitbucket.org/mvdschaar/

mlforhealthlabpub/src/02edab3b2b6d635470fa80184bbfd03b8bf8082d/alg/

timegan/. 80, 82, 85, 86, 92, 93, 94

[188] E. L. Zec, H. Arnelid, and N. Mohammadiha, “Recurrent conditional gans for time

series sensor modelling,” in Time Series Workshop at International Conference on

Machine Learning,(Long Beach, California), 2019. 81, 82, 83, 86, 88

[189] O. Mogren, “C-rnn-gan: Continuous recurrent neural networks with adversarial train-

ing,” arXiv preprint arXiv:1611.09904, 2016. 82

159

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/02edab3b2b6d635470fa80184bbfd03b8bf8082d/alg/timegan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/02edab3b2b6d635470fa80184bbfd03b8bf8082d/alg/timegan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/02edab3b2b6d635470fa80184bbfd03b8bf8082d/alg/timegan/

[190] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,

vol. 9, no. 8, pp. 1735–1780, 1997. 82

[191] De Meer, Fernando, “Generating financial series with generative adversarial net-

works,” 2019. 82

[192] S. Arora and Y. Zhang, “Do gans actually learn the distribution? an empirical study,”

arXiv preprint arXiv:1706.08224, 2017. 83, 96

[193] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine learning

lecture 6a overview of mini-batch gradient descent,” 2012. http://www.cs.toronto.

edu/~hinton/coursera/lecture6/lec6.pdf. 83

[194] R. Fu, J. Chen, S. Zeng, Y. Zhuang, and A. Sudjianto, “Time series simulation by

conditional generative adversarial net,” arXiv preprint arXiv:1904.11419, 2019. 86

[195] B. K. Beaulieu-Jones, Z. S. Wu, C. Williams, and C. S. Greene, “Privacy-preserving

generative deep neural networks support clinical data sharing,” BioRxiv, p. 159756,

2017. 88

[196] R. J. Williams and D. Zipser, “A learning algorithm for continually running fully

recurrent neural networks,” Neural computation, vol. 1, no. 2, pp. 270–280, 1989. 91

[197] C. Esteban, S. L. Hyland, and G. Rätsch, “RCGAN code repository.” https://

github.com/ratschlab/RGAN. 92, 93, 95

[198] H. Buehler, B. Horvath, T. Lyons, I. Perez Arribas, and B. Wood, “A data-driven

market simulator for small data environments,” Available at SSRN 3632431, 2020.

92

[199] M. Lucic, K. Kurach, M. Michalski, S. Gelly, and O. Bousquet, “Are gans created

equal? a large-scale study,” in Advances in neural information processing systems,

pp. 700–709, 2018. 92

[200] Q. Xu, G. Huang, Y. Yuan, C. Guo, Y. Sun, F. Wu, and K. Weinberger, “An

empirical study on evaluation metrics of generative adversarial networks,” arXiv

preprint arXiv:1806.07755, 2018. 92

160

http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
http://www.cs.toronto.edu/~hinton/coursera/lecture6/lec6.pdf
https://github.com/ratschlab/RGAN
https://github.com/ratschlab/RGAN

[201] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochreiter, “Gans trained

by a two time-scale update rule converge to a local nash equilibrium,” in Advances

in neural information processing systems, pp. 6626–6637, 2017. 92

[202] A. Odena, C. Olah, and J. Shlens, “Conditional image synthesis with auxiliary classi-

fier gans,” in Proceedings of the 34th International Conference on Machine Learning-

Volume 70, pp. 2642–2651, JMLR. org, 2017. 96

[203] C. Spearman, “The proof and measurement of association between two things,”

American journal of Psychology, vol. 15, no. 1, pp. 72–101, 1904. 99

[204] Z. Lin, V. Sekar, and G. Fanti, “Why spectral normalization stabilizes gans: Analy-

sis and improvements,” Advances in neural information processing systems, vol. 34,

pp. 9625–9638, 2021. 102

[205] Z. Lin, V. Sekar, and G. Fanti, “On the privacy properties of gan-generated samples,”

in International Conference on Artificial Intelligence and Statistics, pp. 1522–1530,

PMLR, 2021. 102

[206] Z. Lin, S. Wang, V. Sekar, and G. Fanti, “Distributional privacy for data sharing,”

in NeurIPS 2022 Workshop on Synthetic Data for Empowering ML Research. 102

[207] Z. Lin, K. Thekumparampil, G. Fanti, and S. Oh, “Infogan-cr and modelcentrality:

Self-supervised model training and selection for disentangling gans,” in international

conference on machine learning, pp. 6127–6139, PMLR, 2020. 102

[208] Z. Lin, H. Liang, G. Fanti, V. Sekar, R. A. Sharma, E. Soltanaghaei, A. Rowe,

H. Namkung, Z. Liu, D. Kim, et al., “Raregan: Generating samples for rare classes,”

arXiv preprint arXiv:2203.10674, 2022. 102

[209] T. Huster, J. Cohen, Z. Lin, K. Chan, C. Kamhoua, N. O. Leslie, C.-Y. J. Chiang, and

V. Sekar, “Pareto gan: Extending the representational power of gans to heavy-tailed

distributions,” in International Conference on Machine Learning, pp. 4523–4532,

PMLR, 2021. 102

[210] K. K. Thekumparampil, A. Khetan, Z. Lin, and S. Oh, “Robustness of condi-

tional gans to noisy labels,” in Advances in Neural Information Processing Systems,

pp. 10271–10282, 2018. 102

161

[211] Z. Lin, S.-J. Moon, C. M. Zarate, R. Mulagalapalli, S. Kulandaivel, G. Fanti, and

V. Sekar, “Towards oblivious network analysis using generative adversarial net-

works,” in Proceedings of the 18th ACM Workshop on Hot Topics in Networks,

pp. 43–51, 2019. 102

[212] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,

and I. Polosukhin, “Attention is all you need,” Advances in neural information pro-

cessing systems, vol. 30, 2017. 103

[213] Y. Seginer, “The expected norm of random matrices,” Combinatorics, Probability

and Computing, vol. 9, no. 2, pp. 149–166, 2000. 116, 120

[214] P. Kairouz, S. Oh, and P. Viswanath, “The composition theorem for differential

privacy,” in International conference on machine learning, pp. 1376–1385, PMLR,

2015. 131

[215] A. B. Tsybakov, Introduction to nonparametric estimation. Springer Science & Busi-

ness Media, 2008. 132

162

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by ProQuest LLC ().
Copyright of the Dissertation is held by the Author unless otherwise noted.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

Microform Edition where available © ProQuest LLC. No reproduction or digitization
of the Microform Edition is authorized without permission of ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346 USA

30242360

2023

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Chapter 1 Introduction
	1.1 Motivation
	1.2 The Promise and Challenges of GANs
	1.3 Contributions
	1.4 Outline

	Chapter 2 Background
	2.1 Motivating Scenarios
	2.2 Techniques for Sharing Data
	2.2.1 Prior Techniques
	2.2.2 Generative adversarial networks (GANs)

	2.3 Open Questions

	Chapter 3 Fidelity Foundations
	3.1 Overview of Fidelity Challenges
	3.2 Improving Sample Diversity
	3.2.1 Theoretical Framework for Analyzing Sample Diversity
	3.2.2 PacGAN for Improving Sample Diversity
	3.2.3 Experiments
	3.2.4 Discussions

	3.3 Improving Training Stability
	3.3.1 Theoretical Analysis of Spectral Normalization
	3.3.2 Bidirectional Spectral Normalization for Improving Sample Diversity
	3.3.3 Experiments
	3.3.4 Discussions

	3.4 Chapter Summary

	Chapter 4 Privacy Foundations
	4.1 Overview of the Privacy Challenges
	4.2 Protecting Sample-Level Privacy
	4.2.1 GANs' Inherent Privacy Guarantees
	4.2.2 Challenge: DG-SGD Gives Bad Fidelity-Privacy Tradeoff on GANs
	4.2.3 Public Pretraining for Improving Fidelity-Privacy Tradeoff
	4.2.4 Discussions

	4.3 Protecting Distributional Privacy
	4.3.1 Theoretical Framework for Distributional Privacy
	4.3.2 Privacy-Distortion Tradeoffs
	4.3.3 Data Release Mechanism Design
	4.3.4 Case Studies
	4.3.5 Experiments
	4.3.6 Discussions

	4.4 Chapter Summary

	Chapter 5 Applications
	5.1 Meta Architecture for Time Series Data
	5.1.1 Motivation
	5.1.2 Problem Formulation
	5.1.3 Challenges
	5.1.4 DoppelGANger (DG) Design

	5.2 Unified Library for Future Applications
	5.3 Case Studies
	5.3.1 Setup
	5.3.2 Results
	5.3.3 Other Case Studies

	5.4 Chapter Summary

	Chapter 6 Conclusions and Future Works
	6.1 Summary
	6.2 Future Work

	Appendix A Proofs from ch:fidelity
	A.1 Proofs from sec:diversity
	A.1.1 Additional Theoretical Analysis
	A.1.2 Proof of thm:main1
	A.1.3 Proof of thm:main2
	A.1.4 Proof of thm:main3

	A.2 Proofs from sec:stability
	A.2.1 Additional Theoretical Analysis
	A.2.2 Proof of thm:gradient-upperbound-sn
	A.2.3 Proof of thm:scaling
	A.2.4 Proof of thm:scaling-upperbound-practical
	A.2.5 Proof of thm:sn-variance
	A.2.6 Proof of thm:ours-variance

	Appendix B Proofs from ch:privacy
	B.1 Proofs from sec:sampleprivacy
	B.1.1 Proof of thm:gan-pdp-nbr
	B.1.2 Proof of thm:gan-pdp-nbr-upper
	B.1.3 Proof of thm:posteriordistoftrainingsamples
	B.1.4 Proof of thm:roc
	B.1.5 Proof of thm:roc-gan
	B.1.6 Proof of thm:errorneuralbetweengneighboring
	B.1.7 Proof of thm:errorneuralbetweeng
	B.1.8 Proof of thm:kl-probdp
	B.1.9 Proof of thm:errorneuralbetweengupper
	B.1.10 Proof of thm:dptv

	B.2 Proofs from sec:distprivacy
	B.2.1 Proof of thm:tradeoffgeneral
	B.2.2 Proof of thm:continuousmean
	B.2.3 Proof of thm:trade-offmechanismmeancontinuous
	B.2.4 Proof of thm:lowerboundcontinuousquantile
	B.2.5 Proof of thm:upperboundcontinuousquantile
	B.2.6 Proof of thm:discretegeneralfraction
	B.2.7 Proof of thm:upperbounddiscretegeneralfraction

	Bibliography

